

МАТН 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

Матн 122

Ann Clifton ¹

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

OUTLINE

Матн 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

1 2.2: The Derivative Function

DEFINITION

МАТН 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

DEFINITION 1

• If a function, *f*, has a derivative at every point in its domain, then we say that *f* is *differentiable*.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

DEFINITION

MATH 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

DEFINITION 1

- If a function, *f*, has a derivative at every point in its domain, then we say that *f* is *differentiable*.
- In this case, we can define a function f'(x) that outputs the instantaneous rate of change of *f* at *x*.

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

DEFINITION

Матн 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

DEFINITION 1

- If a function, *f*, has a derivative at every point in its domain, then we say that *f* is *differentiable*.
- In this case, we can define a function f'(x) that outputs the instantaneous rate of change of f at x.

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

• We call f'(x) the *derivative function*.

THE TANGENT LINE

МАТН 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

DEFINITION 2

We can regard f'(x₀) as a velocity by viewing it as the slope of a line passing through (x₀, f(x₀)).

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

THE TANGENT LINE

МАТН 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

DEFINITION 2

- We can regard f'(x₀) as a velocity by viewing it as the slope of a line passing through (x₀, f(x₀)).
- We call the line

$$y - f(x_0) = f'(x_0)(x - x_0)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへで

the line tangent to f at $(x_0, f(x_0))$.

LINEARIZATION

Матн 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION • Since we defined $f'(x_0)$ by a limit,

$$f'(x_0)\approx \frac{f(x)-f(x_0)}{x-x_0}$$

for x close to x_0 .

LINEARIZATION

Матн 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION • Since we defined $f'(x_0)$ by a limit,

$$f'(x_0)\approx \frac{f(x)-f(x_0)}{x-x_0}$$

for x close to x_0 .

• Writing $\Delta x = x - x_0$ we can get a good linear approximation of *f* close to x_0 :

$$f(x)\approx f'(x)\Delta x+f(x_0)$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

called the Tangent Line Approximation.

LINEARIZATION

Матн 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION • Since we defined $f'(x_0)$ by a limit,

$$f'(x_0)\approx \frac{f(x)-f(x_0)}{x-x_0}$$

for x close to x_0 .

• Writing $\Delta x = x - x_0$ we can get a good linear approximation of *f* close to x_0 :

$$f(x) \approx f'(x)\Delta x + f(x_0)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

called the Tangent Line Approximation.

• This means f locally looks like a line!

ANIMATION

МАТН 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION

MATH 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION Consider the absolute value function

$$|x| = \left\{ egin{array}{cc} x & ext{if } 0 \leq x, \ -x & ext{else} \end{array}
ight.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

at the point (0,0).

Матн 122

CLIFTON

2.2: THE DERIVATIVE FUNCTION Consider the absolute value function

$$|x| = \left\{ egin{array}{cc} x & ext{if } 0 \leq x, \ -x & ext{else} \end{array}
ight.$$

at the point (0,0).For all *x* < 0,

$$\frac{|x|-0}{x-0} = \frac{-x}{x} = -1.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Матн 122

2.2: THE DERIVATIVE FUNCTION Consider the absolute value function

$$|x| = \left\{ egin{array}{cc} x & ext{if } 0 \leq x, \ -x & ext{else} \end{array}
ight.$$

at the point (0,0).For all *x* < 0,

$$\frac{|x|-0}{x-0} = \frac{-x}{x} = -1.$$

• For all 0 < *x*,

$$\frac{|x|-0}{x-0}=\frac{x}{x}=1.$$

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

MATH 122

2.2: THE DERIVATIVE FUNCTION Consider the absolute value function

$$|x| = \left\{ egin{array}{cc} x & ext{if } 0 \leq x, \ -x & ext{else} \end{array}
ight.$$

at the point (0,0).

• For all x < 0,

$$\frac{|x|-0}{x-0} = \frac{-x}{x} = -1.$$

• For all 0 < x, $\frac{|x| - 0}{x - 0} = \frac{x}{x} = 1.$

• So the derivative at (0,0) is **not** defined: it's -1 if we approach from left to right, and 1 if right to left.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

MATH 122

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MATH 122 CLIFTON

2.2: THE DERIVATIVE FUNCTION

> What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$ • $f'(x) \le 0$, then *f* is decreasing on (a, b),

> > <ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

MATH 122 CLIFTON

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $f'(x) \leq 0$, then f is decreasing on (a, b),
- $0 \le f'(x)$, then *f* is increasing on (a, b),

MATH 122 CLIFTON

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $f'(x) \leq 0$, then *f* is decreasing on (a, b),
- $0 \le f'(x)$, then f is increasing on (a, b),
- f'(x) = 0, then f is constant on (a, b).