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FUNCTION COMPOSITION

DEFINITION 1
Given a function f and a function g such that the range of f
is contained in the domain of g we can define the
composition

g ◦ f (x) = g (f (x)) .

REMARK 1
We require that the range of f is contained in the domain of
g so that the composition makes sense.

That is, we don’t
want f (x) to be a point for which g is undefined.
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EXAMPLE

Let
f (x) = x + 1, and

g(x) = x2.
Both have domain and range R, so we can compose in
either order

.

g ◦ f (x) = g (f (x))

= g(x + 1) = (x + 1)2 = x2 + 2x + 1.

and
f ◦ g(x) = f (g (x))

= f (x2) = x2 + 1.
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EXAMPLE

Let
f (x) = 1

x , and

g(x) = x − 1.
The domain and range of g are both R

.

The domain and
range of f are both

{x ∈ R | x 6= 0} .

If we restrict g(x) to the domain

{x ∈ R | x 6= 1}

then g(x) 6= 0. Hence

f ◦ g(x) =
1

x − 1
.
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VERTICAL SCALING

Let f (x) be a function and let 0 < a be a real number.

The
graph of af (x) is

a vertical stretching of the graph of f (x) if 1 < a
a vertical shrinking of the graph of f (x) if a < 1.
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REFLECTION

The graph of −f (x) is a reflection of f (x) across the x-axis.
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VERTICAL SHIFTING

Let f (x) be a function.

Let 0 < a be a real number.
The graph of f (x) + a is the graph of f (x) shifted up a
units.
The graph of f (x)− a is the graph of f (x) shifted down
a units.
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HORIZONTAL SHIFTING

Let f (x) be a function.

Let 0 < a be a real number.
The graph of f (x − a) is a horizontal shift of f (x) by a
units to the right.
The graph of f (x + a) is a horizontal shift of f (x) by a
units to the left.
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DEFINITION

DEFINITION 2
The doubling time of an exponentially increasing
quantity is the time required for the quantity to double.

The half-life of an exponentially decaying quantity is the
time required for the quantity to be reduced by a factor
of one half.
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DOUBLING TIME

Every exponentially increasing function, P(t) = P0at , has a
fixed doubling time, d .

Take d = loga(2). Then

P(t + d) = P0at+d

= P0atad

= P0ataloga(2)

= 2P0at

= 2P(t).
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fixed doubling time, d . Take d = loga(2).

Then

P(t + d) = P0at+d

= P0atad

= P0ataloga(2)

= 2P0at

= 2P(t).
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Similarly, every exponentially decreasing function,
P(t) = P0at , has a fixed half-life, h.

Take

h = loga

(
1
2

)
= − loga(2).

Then

P(t + h) = P0at+h

= P0atah

= P0ata− loga(2)

=
1
2

P0at

=
1
2

P(t).
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COMPUTING DOUBLING TIME/HALF-LIFE

To approximate the value of the doubling time with a
calculator:

d = loga(2) =
ln(2)
ln(a)

and
h = − loga(2) = −

ln(2)
ln(a)

.
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EXAMPLE

Raditiation from an iodine source decays at a continuous
hourly rate of k = −0.004.

If the radiation level at a spill is
about 2.4 millirems/hour:
(A) What was the radiation level 24 hours later?
(B) How long will it take for the radiation levels to decay to

the maximum acceptable radiation level of 0.6
millirems/hour set by the EPA?
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EXAMPLE (CONT.)

(A) The radiation level 24 hours later is

R(24) = 2.4e−0.004·24 ≈ 2.18 millirems/hour.

(B) Solve the equation below for t :

0.6 = 2.4e−0.004t

⇒ e−0.004t =
2.4
0.6

=
1
4

⇒ −0.004t = ln

(
1
4

)
= − ln(4)

⇒ t =
1

0.004
ln(4) ≈ 346.57 hours.

Therefore, it will take approximately 346.57/24 = 14.4
days.
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The population of Kenya was about 19.5 million in 1984 and
39 million in 2009.

Find, assuming exponential growth, a
function of t years since 1984 modeling the population.
We are given P0 = 19.5 and P(25) = 39. If we assume that
P(t) = 19.5ekt , then

39 = 19.5e25k

⇒ 39
19.5

= 2 = e25k

⇒ ln(2) = ln(e25k ) = 25k

⇒ k =
ln(2)
25

≈ 0.028.

Therefore
P(t) ≈ 19.5e0.28t .
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⇒ ln(2) = ln(e25k ) = 25k

⇒ k =
ln(2)
25

≈ 0.028.

Therefore
P(t) ≈ 19.5e0.28t .



MATH 122

CLIFTON

1.8: NEW
FUNCTIONS
FROM OLD

FUNCTION
COMPOSITION

SCALING

RIGID
TRANSFORMATIONS

1.7: EXPO-
NENTIAL
GROWTH AND
DECAY

DOUBLING TIME
AND HALF-LIFE

FINANCIAL
APPLICATIONS

CONTINUOUSLY
COMPOUNDING
INTEREST

The population of Kenya was about 19.5 million in 1984 and
39 million in 2009. Find, assuming exponential growth, a
function of t years since 1984 modeling the population.
We are given P0 = 19.5 and P(25) = 39. If we assume that
P(t) = 19.5ekt , then

39 = 19.5e25k

⇒ 39
19.5

= 2 = e25k

⇒ ln(2) = ln(e25k ) = 25k

⇒ k =
ln(2)
25

≈ 0.028.

Therefore
P(t) ≈ 19.5e0.28t .



MATH 122

CLIFTON

1.8: NEW
FUNCTIONS
FROM OLD

FUNCTION
COMPOSITION

SCALING

RIGID
TRANSFORMATIONS

1.7: EXPO-
NENTIAL
GROWTH AND
DECAY

DOUBLING TIME
AND HALF-LIFE

FINANCIAL
APPLICATIONS

CONTINUOUSLY
COMPOUNDING
INTEREST

The release of chlorofluorocarbons (CFCs) used in air
conditioners and household aerosols destroys the ozone
layer in the upper atmosphere.

The quantity of ozone, Q(t),
decays exponentially at a continuous rate of 0.25% per year.
What is the half-life of ozone?
The half life is given by

logek (2) = − ln(2)
ln(ek )

= − ln(2)
k

= − ln(2)
− 1

400
= 400 ln(2) ≈ 277 years.
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COMPOUND INTEREST

Assume a sum of money P0 is deposited in an account
paying interest at a rate of r yearly, compounded n times per
year.

This means that each compounding period, the
account earns interest on the balance at a rate of r/n.
What is the balance of the account after t years?
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COMPOUNDING INTEREST (CONT.)

Consider the table:

Compounding Period Account Balance

1 P0
(
1 + r

n

)
2 P0

(
1 + r

n

) (
1 + r

n

)
= P0

(
1 + r

n

)2

3 P0
(
1 + r

n

)2 (1 + r
n

)
= P0

(
1 + r

n

)3

...
...

n P0
(
1 + r

n

)n

So at the end of the year, the balance will be P0
(
1 + r

n

)n.
Continuing this way, the account balance after t years will be

P0

(
1 +

r
n

)nt
.
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DOUBLING TIME

Say you invest P0 dollars at a rate of r per year,
compounded n times.

What is the doubling time?
The function for the account balance is

P0

(
1 +

r
n

)nt
= P0

((
1 +

r
n

)n
)t

.

Therefore the doubling time is

d = log(1+ r
n )

n(2)

=
ln(2)

ln
((

1 + r
n

)n
) =

ln(2)
n ln

(
1 + r

n

) .
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EXAMPLE

Say the interest rate is 2% and interest is compounded
yearly.

The expected doubling time is

d =
ln(2)

ln(1.02)

≈ 35 years.

REMARK 2 (“RULE OF 70”)

When r% is very small,

ln
(

1 +
r

100

)
≈ r

100

and ln(2) ≈ .7, so the doubling rate is approximately

d =
ln(2)

ln
(
1 + r

100

) ≈ .7
r/100

=
70
r
.
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d =
ln(2)

ln
(
1 + r

100

) ≈ .7
r/100

=
70
r
.



MATH 122

CLIFTON

1.8: NEW
FUNCTIONS
FROM OLD

FUNCTION
COMPOSITION

SCALING

RIGID
TRANSFORMATIONS

1.7: EXPO-
NENTIAL
GROWTH AND
DECAY

DOUBLING TIME
AND HALF-LIFE

FINANCIAL
APPLICATIONS

CONTINUOUSLY
COMPOUNDING
INTEREST

EXAMPLE

Say the interest rate is 2% and interest is compounded
yearly. The expected doubling time is

d =
ln(2)

ln(1.02)
≈ 35 years.

REMARK 2 (“RULE OF 70”)

When r% is very small,

ln
(

1 +
r

100

)
≈ r

100

and ln(2) ≈ .7, so the doubling rate is approximately

d =
ln(2)

ln
(
1 + r

100

)

≈ .7
r/100

=
70
r
.



MATH 122

CLIFTON

1.8: NEW
FUNCTIONS
FROM OLD

FUNCTION
COMPOSITION

SCALING

RIGID
TRANSFORMATIONS

1.7: EXPO-
NENTIAL
GROWTH AND
DECAY

DOUBLING TIME
AND HALF-LIFE

FINANCIAL
APPLICATIONS

CONTINUOUSLY
COMPOUNDING
INTEREST

EXAMPLE

Say the interest rate is 2% and interest is compounded
yearly. The expected doubling time is

d =
ln(2)

ln(1.02)
≈ 35 years.

REMARK 2 (“RULE OF 70”)

When r% is very small,

ln
(

1 +
r

100

)
≈ r

100

and ln(2) ≈ .7, so the doubling rate is approximately

d =
ln(2)

ln
(
1 + r

100

) ≈ .7
r/100

=
70
r
.



MATH 122

CLIFTON

1.8: NEW
FUNCTIONS
FROM OLD

FUNCTION
COMPOSITION

SCALING

RIGID
TRANSFORMATIONS

1.7: EXPO-
NENTIAL
GROWTH AND
DECAY

DOUBLING TIME
AND HALF-LIFE

FINANCIAL
APPLICATIONS

CONTINUOUSLY
COMPOUNDING
INTEREST

EXAMPLE

Say the interest rate is 2% and interest is compounded
yearly. The expected doubling time is

d =
ln(2)

ln(1.02)
≈ 35 years.

REMARK 2 (“RULE OF 70”)

When r% is very small,

ln
(

1 +
r

100

)
≈ r

100

and ln(2) ≈ .7, so the doubling rate is approximately

d =
ln(2)

ln
(
1 + r

100

) ≈ .7
r/100

=
70
r
.



MATH 122

CLIFTON

1.8: NEW
FUNCTIONS
FROM OLD

FUNCTION
COMPOSITION

SCALING

RIGID
TRANSFORMATIONS

1.7: EXPO-
NENTIAL
GROWTH AND
DECAY

DOUBLING TIME
AND HALF-LIFE

FINANCIAL
APPLICATIONS

CONTINUOUSLY
COMPOUNDING
INTEREST

CONTINUOUSLY COMPOUNDING INTEREST

The method above is discrete.

If instead, we wish to
compound interest at every instant, we get continuously
compounding interest,

P(t) = P0ert .
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EXAMPLE

If $10,000 is invested at 5% per year, compounded
continuously, how long will it take to reach $15,000?

We want to solve the equation below for t :

P(t) = 10000et/20 = 15000

⇒ et/20 =
15000
10000

=
3
2

⇒ t/20 = ln(et/20) = ln

(
3
2

)
⇒ t = 20 ln

(
3
2

)
≈ 8 years.
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DOUBLING TIME

Say you invest P0 dollars at a rate of r% per year
compounding continuously.

The account balance is given by
the function

P0e
r

100 t = P0(e
r

100 )t .

Hence the doubling time is given by

log
e

r
100

(2) =
ln(2)

ln(e
r

100 )
=

ln(2)
r

100
≈ 70

r
.
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