

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL

FUNCTIONS

1.6: Logarithms

Inverse Function

EXPONENTIAL
FUNCTIONS WITH
BASE 6

$\overline{\text{MATH } 122}$

Ann Clifton 1

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

OUTLINE

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTION

1.6: LOGARITHMS

Inverse Functions
Definition

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

OUTLINE

MATH 122

CLIFTO

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

1 1.4: Applications of Functions to Economics

2 1.5: EXPONENTIAL FUNCTIONS

OUTLINE

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithm

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

1 1.4: Applications of Functions to Economics

2 1.5: EXPONENTIAL FUNCTIONS

- **3** 1.6: LOGARITHMS
 - Inverse Functions
 - Definition
 - Exponential Functions with Base e

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL

Throughout this course we will denote

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

Throughout this course we will denote

• the cost of producing q goods by C(q),

MATH 122

CLIFTO

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

Throughout this course we will denote

- the cost of producing q goods by C(q),
- the revenue received from selling q goods by R(q), and

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

Throughout this course we will denote

- the cost of producing q goods by C(q),
- ullet the revenue received from selling q goods by R(q), and
- the profit from selling q goods by $\pi(q)$.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTION

1.6: LOGARITHM

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL

A company makes radios.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTION

1.6: LOGARITHMS

INVERSE FUNCTION

DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE 0

A company makes radios. To begin manufacturing radios, they spend \$24,000 on equipment and a factory.

MATH 122

1.4: APPLICA-TIONS OF FUNCTIONS TO ECONOMICS

LOGARITHMS

A company makes radios. To begin manufacturing radios, they spend \$24,000 on equipment and a factory. To manufacture a radio costs \$7 in material and labour.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

A company makes radios. To begin manufacturing radios, they spend \$24,000 on equipment and a factory. To manufacture a radio costs \$7 in material and labour. To manufacture q radios, the cost is:

$$C(q) = 7q + 24000.$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with

A company makes radios. To begin manufacturing radios, they spend \$24,000 on equipment and a factory. To manufacture a radio costs \$7 in material and labour. To manufacture q radios, the cost is:

$$C(q) = 7q + 24000.$$

The \$24,000 expenditue is called a fixed cost.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

A company makes radios. To begin manufacturing radios, they spend \$24,000 on equipment and a factory. To manufacture a radio costs \$7 in material and labour. To manufacture q radios, the cost is:

$$C(q) = 7q + 24000.$$

- The \$24,000 expenditue is called a *fixed cost*.
- The \$7/radio in labour and material is called a variable cost.

LINEAR MARGINAL COST

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL

DEFINITION 1

For a linear cost function, the marginal cost is the cost to product one additional unit:

$$\frac{C(q+1)-C(q)}{(q+1)-q}=C(q+1)-C(q).$$

LINEAR MARGINAL COST

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 1

For a linear cost function, the marginal cost is the cost to product one additional unit:

$$\frac{C(q+1)-C(q)}{(q+1)-q}=C(q+1)-C(q).$$

REMARK 1

This is just the slope of the linear cost function.

PROFIT

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTION
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 2

Given a revenue and a cost function, the profit function is

$$\pi(q) = R(q) - C(q).$$

PROFIT

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION

EXPONENTIAL
FUNCTIONS WITH
BASE 0

DEFINITION 2

Given a revenue and a cost function, the profit function is

$$\pi(q) = R(q) - C(q).$$

• The *break-even* point is the quantity, q, for which

$$\pi(q)=0$$

holds.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTION

1.6: LOGARITHMS

LOGARITHN Inverse Functi

EXPONENTIAL
FUNCTIONS WITH
BASE 0

In the example above, assume that radios sell for 15 each.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTION

1.6: LOGARITHMS

Inverse Function
Definition

In the example above, assume that radios sell for 15 each. The revenue function is

$$R(q)=15q.$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTION
DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE 6

In the example above, assume that radios sell for 15 each. The revenue function is

$$R(q)=15q.$$

The profit function is

$$\pi(q) = R(q) - C(q)$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION

EXPONENTIAL

FUNCTIONS WITH

BASE 0

In the example above, assume that radios sell for 15 each. The revenue function is

$$R(q)=15q.$$

The profit function is

$$\pi(q) = R(q) - C(q) = 15q - (7q + 24000)$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE 0

In the example above, assume that radios sell for 15 each. The revenue function is

$$R(q)=15q.$$

The profit function is

$$\pi(q) = R(q) - C(q) = 15q - (7q + 24000) = 8q - 24000.$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

Inverse Function Definition Exponential Functions with Base 0 In the example above, assume that radios sell for 15 each. The revenue function is

$$R(q)=15q.$$

The profit function is

$$\pi(q) = R(q) - C(q) = 15q - (7q + 24000) = 8q - 24000.$$

The break-even point is value of q making

$$8q - 24000 = 0$$

hold.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithm

INVERSE FUNCTION DEFINITION EXPONENTIAL FUNCTIONS WITH BASE θ

In the example above, assume that radios sell for 15 each. The revenue function is

$$R(q)=15q.$$

The profit function is

$$\pi(q) = R(q) - C(q) = 15q - (7q + 24000) = 8q - 24000.$$

The break-even point is value of q making

$$8q - 24000 = 0$$

hold. Therefore the break-even point is

$$q = \frac{24000}{8} = 3000.$$

MARGINAL REVENUE

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 3

The *marginal revenue* for a linear revenue function is the revenue from selling one additional item,

$$\frac{R(q+1) - R(q)}{(q+1) - q} = R(q+1) - R(q).$$

MARGINAL REVENUE

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithm

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE 6

DEFINITION 3

The *marginal revenue* for a linear revenue function is the revenue from selling one additional item,

$$\frac{R(q+1) - R(q)}{(q+1) - q} = R(q+1) - R(q).$$

REMARK 2

This is just the slope of the revenue function.

MARGINAL PROFIT

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 4

The *marginal profit* for linear cost and revenue functions is the profit from selling one additional item

$$\frac{\pi(q+1) - \pi(q)}{(q+1) - q} = \pi(q+1) - \pi(q).$$

MARGINAL PROFIT

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithm

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 4

The *marginal profit* for linear cost and revenue functions is the profit from selling one additional item

$$\frac{\pi(q+1) - \pi(q)}{(q+1) - q} = \pi(q+1) - \pi(q).$$

REMARK 3

This is the slope of the revenue function less the slope of the cost function.

MATH 122

CLIFTON

1.4: APPLICA
TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTION
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 5

• A function P(t) is exponential with base a if $P(t) = P_0 a^t$.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 5

- A function P(t) is exponential with base a if $P(t) = P_0 a^t$.
- The value P_0 is the *initial value*, $P_0 = P(0)$.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

DEFINITION 5

- A function P(t) is exponential with base a if $P(t) = P_0 a^t$.
- The value P_0 is the *initial value*, $P_0 = P(0)$.
- When 1 < a, we say that P models exponential growth and when 0 < a < 1, we say that P models exponential decay.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS

DEFINITION

EXPONENTIAL

FUNCTIONS WITH

BASE 0

DEFINITION 5

- A function P(t) is exponential with base a if $P(t) = P_0 a^t$.
- The value P_0 is the *initial value*, $P_0 = P(0)$.
- When 1 < a, we say that P models exponential growth and when 0 < a < 1, we say that P models exponential decay.
- The base a is sometimes called the growth/decay factor.

RELATIVE CHANGE

Let $P(t) = P_0 a^t$.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6:

INVERSE FUNCTION

EXPONENTIAL
FUNCTIONS WITH
BASE 0

RELATIVE CHANGE

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions

DEFINITION

EXPONENTIAL

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$

RELATIVE CHANGE

MATH 122

CLIFTON

1.4: APPLICA TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$

= $\frac{P_0 a^{t+1} - P_0 a^t}{P_0 a^t}$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE 0

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$
$$= \frac{P_0 a^{t+1} - P_0 a^t}{P_0 a^t}$$
$$= \frac{P_0 a^t \cdot a - P_0 a^t}{P_0 a^t}$$

MATH 122

CLIFTON

1.4: APPLICA
TIONS OF
FUNCTIONS
TO
FORMUCS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with
Base \$\theta\$

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$

$$= \frac{P_0 a^{t+1} - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t \cdot a - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t (a-1)}{P_0 a^t}$$

MATH 122

CLIFTON

1.4: APPLICA
TIONS OF
FUNCTIONS
TO
FORMUCS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS

DEFINITION

EXPONENTIAL

FUNCTIONS WITH

BASE 6

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$

$$= \frac{P_0 a^{t+1} - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t \cdot a - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t (a-1)}{P_0 a^t}$$

$$= a - 1.$$

MATH 122

CLIFTON

1.4: APPLICA-

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS

DEFINITION

EXPONENTIAL

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$

$$= \frac{P_0 a^{t+1} - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t \cdot a - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t (a-1)}{P_0 a^t}$$

$$= a - 1.$$

REMARK 4

Exponential functions have constant relative change.

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

Let $P(t) = P_0 a^t$. The relative change, r, of P is given by

$$r = \frac{P(t+1) - P(t)}{P(t)}$$

$$= \frac{P_0 a^{t+1} - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t \cdot a - P_0 a^t}{P_0 a^t}$$

$$= \frac{P_0 a^t (a-1)}{P_0 a^t}$$

$$= a - 1$$

REMARK 4

Exponential functions have constant **relative** change. Linear functions have constant **rate** of change.

MATH 122

CLIFTON

1.4: APPLICA TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Function

DEFINITION EXPONENTIAL FUNCTIONS WITH BASE θ

The body eliminates 40% of the drug ampicillan (an antibiotic) each hour.

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

•
$$Q_0 = Q(0) = 250$$
,

MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

Inverse Functions Definition Exponential Functions with Base θ

- $Q_0 = Q(0) = 250$,
- Q(1) = 250(6/10) = 250(3/5),

MATH 122

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE &

•
$$Q_0 = Q(0) = 250$$
,

$$Q(1) = 250(6/10) = 250(3/5),$$

•
$$Q(2) = [250(3/5)](3/5) = 250(3/5)^2$$
,

MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH
BASE 0

The body eliminates 40% of the drug ampicillan (an antibiotic) each hour. Given a dose of 250 mg, find a function, Q(t), that models the quantity of the drug in the body t hours after it has been administered.

•
$$Q_0 = Q(0) = 250$$
,

$$Q(1) = 250(6/10) = 250(3/5),$$

•
$$Q(2) = [250(3/5)](3/5) = 250(3/5)^2$$
,

:

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions Definition Exponential Functions with Base θ

The body eliminates 40% of the drug ampicillan (an antibiotic) each hour. Given a dose of 250 mg, find a function, Q(t), that models the quantity of the drug in the body t hours after it has been administered.

•
$$Q_0 = Q(0) = 250$$
,

$$Q(1) = 250(6/10) = 250(3/5),$$

$$Q(2) = [250(3/5)](3/5) = 250(3/5)^2,$$

:

•
$$Q(t) = [250(3/5)^{t-1}](3/5) = 250(3/5)^t$$
.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

In 1995, there were 14 wolves reintroduced to Wyoming.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL

In 1995, there were 14 wolves reintroduced to Wyoming. By 2012 (17 years later), there were 207 wolves.

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

$$P(17) = P(0) \cdot a^{17} = 14a^{17} = 207$$

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH
RASE Q

$$P(17) = P(0) \cdot a^{17} = 14a^{17} = 207$$

 $\Rightarrow a^{17} = \frac{207}{14}$

MATH 122

CLIFTON

TI.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

$$P(17) = P(0) \cdot a^{17} = 14a^{17} = 207$$

 $\Rightarrow a^{17} = \frac{207}{14}$
 $\Rightarrow a = \sqrt[17]{\frac{207}{14}} \approx 1.172$

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

Inverse Functions Definition Exponential Functions with Base θ

In 1995, there were 14 wolves reintroduced to Wyoming. By 2012 (17 years later), there were 207 wolves. Assuming the growth of the population is exponential, find a function P(t) modeling the population size as a function of t years after 1995.

$$P(17) = P(0) \cdot a^{17} = 14a^{17} = 207$$

 $\Rightarrow a^{17} = \frac{207}{14}$
 $\Rightarrow a = \sqrt[17]{\frac{207}{14}} \approx 1.172$

Therefore,

$$P(t) = 14 \left(\frac{207}{14}\right)^{\frac{t}{17}} \approx 14(1.172)^t.$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHM

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL

Assume that Q(t) is an exponential function.

MATH 122

1.5: EXPO-NENTIAL FUNCTIONS

LOGARITHMS

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS
DEFINITION
EXPONENTIAL
FUNCTIONS WITH

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

Inverse Function
Definition
Exponential
Functions with
Base 0

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

$$\frac{91.4}{88.2} = \frac{Q(23)}{Q(20)}$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with
Base θ

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

$$\frac{91.4}{88.2} = \frac{Q(23)}{Q(20)} = \frac{Q_0 a^{23}}{Q_0 a^{20}}$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with
Base θ

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

$$\frac{91.4}{88.2} = \frac{Q(23)}{Q(20)} = \frac{Q_0 a^{23}}{Q_0 a^{20}} = a$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with
Base 0

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

$$\frac{91.4}{88.2} = \frac{Q(23)}{Q(20)} = \frac{Q_0 a^{23}}{Q_0 a^{20}} = a^{3}$$

$$\Rightarrow a = \sqrt[3]{\frac{91.4}{88.2}} \approx 1.012$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS

DEFINITION

EXPONENTIAL

FUNCTIONS WITH

BASE 0

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

$$\frac{91.4}{88.2} = \frac{Q(23)}{Q(20)} = \frac{Q_0 a^{23}}{Q_0 a^{20}} = a^{3}$$

$$\Rightarrow a = \sqrt[3]{\frac{91.4}{88.2}} \approx 1.012$$

$$r = a - 1$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions
Definition
Exponential
Functions with
Base 0

Assume that Q(t) is an exponential function. Suppose that Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

$$\frac{91.4}{88.2} = \frac{Q(23)}{Q(20)} = \frac{Q_0 a^{23}}{Q_0 a^{20}} = a^3$$

$$\Rightarrow a = \sqrt[3]{\frac{91.4}{88.2}} \approx 1.012$$

$$r = a - 1 = \sqrt[3]{\frac{91.4}{88.2}} - 1 \approx 0.012$$

GRAPHS OF EXPONENTIAL FUNCTIONS

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO

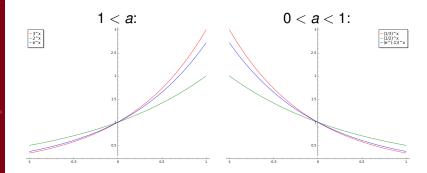
1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

LOGARITHM

Inverse Function

DEFINITION
EXPONENTIAL
FUNCTIONS WITH



MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTIONS

EXPONENTIAL FUNCTIONS WITH BASE θ

DEFINITION 6

A function f(x) has an *inverse* if there exists a function $f^{-1}(x)$ such that

$$f \circ f^{-1}(x) = x$$
 and $f^{-1} \circ f(x) = x$.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

Inverse Function

DEFINITION

EXPONENTIAL
FUNCTIONS WITH

DEFINITION 6

A function f(x) has an *inverse* if there exists a function $f^{-1}(x)$ such that

$$f \circ f^{-1}(x) = x$$
 and $f^{-1} \circ f(x) = x$.

THEOREM 1 (HORIZONTAL LINE TEST)

If any horizontal line intersects the graph of f(x) in at most one point, then f(x) admits a composition inverse.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO NENTIAL FUNCTION

1.6: LOGARITHMS

INVERSE FUNCTIO

DEFINITION

EXPONENTIAL FUNCTIONS WITE BASE 0 First, we note that any exponential function visibly passes the Horizontal Line Test.

MATH 122

CLIFTO

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCT

EXPONENTIAL
FUNCTIONS WITH

First, we note that any exponential function visibly passes the Horizontal Line Test.

DEFINITION 7

The *logarithm with base a* is the inverse function of the exponential function, a^x , and is denoted by

$$\log_a(x)$$
.

MATH 122

CLIFTO!

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTION

EXPONENTIAL FUNCTIONS WITH BASE 0 First, we note that any exponential function visibly passes the Horizontal Line Test.

DEFINITION 7

The *logarithm with base a* is the inverse function of the exponential function, a^x , and is denoted by

$$\log_a(x)$$
.

REMARK 5

By definition,

$$\log_a(a^x) = x$$
 and $a^{\log_a(x)} = x$.

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS
INVERSE FUNCTION

DEFINITION

EXPONENTIAL

EXPONENTIAL FUNCTIONS WITH BASE 0 First, we note that any exponential function visibly passes the Horizontal Line Test.

DEFINITION 7

The *logarithm with base a* is the inverse function of the exponential function, a^x , and is denoted by

$$\log_a(x)$$
.

REMARK 5

By definition,

$$\log_a(a^x) = x$$
 and $a^{\log_a(x)} = x$.

• One denotes $\log_e(x)$ by $\ln(x)$.

PROPERTIES OF LOGARITHMS

MATH 122

LOGARITHMS

DEFINITION

PROPERTIES OF LOGARITHMS

MATH 122

LOGARITHMS

DEFINITION

•
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$
,

PROPERTIES OF LOGARITHMS

MATH 122

CLIFTON

1.4: APPLICA TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: Logarithms

Inverse Function

EXPONENTIAL FUNCTIONS WITH BASE 0 •
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$
,

PROPERTIES OF LOGARITHMS

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTI

DEFINITION

EXPONENTIAL FUNCTIONS WITH BASE θ

$$\bullet \log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y),$$

$$\bullet \log_a(x) = \frac{\log_b(x)}{\log_b(a)}.$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTION

1.6: Logarithms

DEFINITION

EXPONENTIAL FUNCTIONS WITH BASE 0

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO FCONOMICS

1.5: EXPONENTIAL

1.6:

LOGARII HMS
INVERSE FUNCTIONS

DEFINITION

DEFINITION
EXPONENTIAL
FUNCTIONS WITH

$$\Rightarrow \ln(3^t) = \ln(10)$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL

1.6: LOGARITHM

INVERSE FUNCTION

DEFINITION

EXPONENTIAL FUNCTIONS WITE BASE #

$$\Rightarrow \ln(3^t) = \ln(10)$$

$$\Rightarrow t \ln(3) = \ln(10)$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: Logarithms

INVERSE FUNCTION

DEFINITION

EXPONENTIAL FUNCTIONS WITH

$$\Rightarrow \ln(3^t) = \ln(10)$$

$$\Rightarrow t \ln(3) = \ln(10)$$

$$\Rightarrow t = \frac{\ln(10)}{\ln(3)} (= \log_3(10))$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL

1.6: Logarithms

INVERSE FUNCTION

DEFINITION

Exponential Functions witi Base 0

MATH 122

DEFINITION

$$\Rightarrow e^{3t} = \frac{12}{5}$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Function

DEFINITION

EXPONENTIAL
FUNCTIONS WITH

$$\Rightarrow e^{3t} = \frac{12}{5}$$

$$\Rightarrow \ln(e^{3t}) = 3t = \ln\left(\frac{12}{5}\right)$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Function

DEFINITION EXPONENTIAL

$$\Rightarrow e^{3t} = \frac{12}{5}$$

$$\Rightarrow \ln(e^{3t}) = 3t = \ln\left(\frac{12}{5}\right)$$

$$\Rightarrow t = \frac{1}{3}\ln\left(\frac{12}{5}\right)$$

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTION

EXPONENTIAL FUNCTIONS WITH With the natural logarithm, we can rewrite any exponential function with base *e* if we so choose.

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL

1.6: LOGARITHMS

INVERSE FUNCTIO

EXPONENTIAL
FUNCTIONS WITH
BASE 0

With the natural logarithm, we can rewrite any exponential function with base e if we so choose. Say, $P(t) = P_0 a^t$.

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Functions

EXPONENTIAL FUNCTIONS WITH BASE 0

With the natural logarithm, we can rewrite any exponential function with base e if we so choose. Say, $P(t) = P_0 a^t$. We let $k = \ln(a)$ so $e^k = a$ and hence

$$P_0e^{kt}=P_0\left(e^k\right)^t$$

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS

EXPONENTIAL
FUNCTIONS WITH
BASE 0

With the natural logarithm, we can rewrite any exponential function with base e if we so choose. Say, $P(t) = P_0 a^t$. We let $k = \ln(a)$ so $e^k = a$ and hence

$$P_0e^{kt}=P_0\left(e^k\right)^t=P_0a^t$$

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS

EXPONENTIAL FUNCTIONS WITE BASE 0

With the natural logarithm, we can rewrite any exponential function with base e if we so choose. Say, $P(t) = P_0 a^t$. We let $k = \ln(a)$ so $e^k = a$ and hence

$$P_0e^{kt}=P_0\left(e^k\right)^t=P_0a^t=P(t)$$

CLIFTO

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTIONS

EXPONENTIAL
FUNCTIONS WITH
BASE 0

With the natural logarithm, we can rewrite any exponential function with base e if we so choose. Say, $P(t) = P_0 a^t$. We let $k = \ln(a)$ so $e^k = a$ and hence

$$P_0e^{kt}=P_0\left(e^k\right)^t=P_0a^t=P(t)$$

We call *k* the *continuous growth/decay rate*.

MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPO-NENTIAL FUNCTION

1.6: LOGARITHM

INVERSE FUNCTI

EXPONENTIAL
FUNCTIONS WITH
BASE 0

Convert $P(t) = 1000e^{0.05t}$ to the form P_0a^t .

MATH 122

CLIFTON

TIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

INVERSE FUNCTION

EXPONENTIAL FUNCTIONS WITH BASE 0 Convert $P(t) = 1000e^{0.05t}$ to the form P_0a^t . Let $a = e^{0.05}$.

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHM

Inverse Functions

EXPONENTIAL FUNCTIONS WITH BASE 0 Convert $P(t) = 1000e^{0.05t}$ to the form P_0a^t . Let $a = e^{0.05}$. Then

$$P(t) = 1000e^{0.05t} = 1000(e^{0.05})^t = 1000a^t.$$

MATH 122

CLIFTON

1.4: APPLICATIONS OF FUNCTIONS TO ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHM

Inverse Functio

EXPONENTIAL FUNCTIONS WITH BASE 0 Convert $P(t) = 500(1.06)^t$ to the form P_0e^{kt} .

MATH 122

CLIFTON

TIONS OF
FUNCTIONS
TO
ECONOMICS

1.5: EXPONENTIAL FUNCTIONS

1.6: LOGARITHMS

Inverse Function

EXPONENTIAL
FUNCTIONS WITH
BASE 0

Convert $P(t) = 500(1.06)^{t}$ to the form P_0e^{kt} .

$$P(t) = 500(1.06)^t = 500e^{\ln(1.06)t}$$
.