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el A company makes radios. To begin manufacturing radios,
FoNCrIoNs they spend $24, 000 on equipment and a factory. To

—— manufacture a radio costs $7 in material and labour. To
manufacture g radios, the cost is:

C(q) = 7q + 24000.

@ The $24,000 expenditue is called a fixed cost.

@ The $7/radio in labour and material is called a variable
cost.
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7(q) = R(q) — C(q).
e The break-even point is the quantity, g, for which

m(q) =0

holds. )
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e LEH In the example above, assume that radios sell for 15 each.
CLIFTON The revenue function is

1.4: APPLICA- R 1 5
TIONS OF ( ) = .
FUNCTIONS q q
TO

Fonomics The profit function is
7(q) = R(q) — C(q) = 159 — (7q + 24000) = 8g — 24000.
The break-even point is value of g making
89 — 24000 =0
hold. Therefore the break-even point is

9= 200 _gop,
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To The marginal profit for linear cost and revenue functions is
Il the profit from selling one additional item

m(g+1) —7(q)
(g+1)—-q

=n(q+1) —7(q).

This is the slope of the revenue function less the slope of
the cost function.
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e A function P(t) is exponential with base a if

1.5: Expo- P(t) = Poat.

FONCTIONS e The value Py is the initial value, Py = P(0).

e When 1 < a, we say that P models exponential growth
and when 0 < a < 1, we say that P models exponential
decay.

e The base ais sometimes called the growth/decay
factor.
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MaTH 122 Let P(t) = Pya'. The relative change, r, of P is given by
P(t+1)— P(t)

P(t)
Poat-H _ Poat
1.5: EXPO- PO at
e _ Pa-a— PR

Poat

Poa’(a — 1)
—hd
= a—1.

Exponential functions have constant relative change.
Linear functions have constant rate of change.
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The body eliminates 40% of the drug ampicillan (an
antibiotic) each hour. Given a dose of 250 mg, find a
function, Q(t), that models the quantity of the drug in the
L.5: Expo- body f hours after it has been administered.

FUNCTIONS Y QO — Q(O) = 250,
e Q(1) = 250(6/10) = 250(3/5),

@ Q(2) = [250(3/5)](3/5) = 250(3/5)?,

° b(t) — [250(3/5)!-1](3/5) = 250(3/5)".
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e LEH In 1995, there were 14 wolves reintroduced to Wyoming. By
CLIFTON 2012 (17 years later), there were 207 wolves. Assuming the
growth of the population is exponential, find a function P(t)
modeling the population size as a function of t years after
1995.

P(17) = P(0)-a'" =14a'" =207
FUNCTIONS
g7 = 2
T 14

171207
= — =~ 1.172
= a \/ 2

t

P(t) = 14 (2&7) "~ 14(1.172)"

Therefore,
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CLIFTON Assume that Q(t) is an exponential function. Suppose that
Q(20) = 88.2 and Q(23) = 91.4.

(A) Find the base.

91.4 Q(23) Qa*

1.5: EXPO- — — e 33
SN 88.2 Q(20)  Qoa*®
./91.4
= == x~1.012
— 4 ggo =10
(B) Find the relative growth rate.
r=a—-1=14 %—1 ~0.012

88.2
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If any horizontal line intersects the graph of f(x) in at most
one point, then f(x) admits a composition inverse.
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First, we note that any exponential function visibly passes
the Horizontal Line Test.

The logarithm with base a is the inverse function of the
exponential function, &%, and is denoted by

log a(X). )
REMARKS

o By definition,

log,(a¥) = x and &°8() = x.

e One denotes logg(x) by In(x).
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@ log,(xy) = loga(x) + loga(y),
@ log, <f,> = log 5(x) — log4(¥),
@ log, (x") = rlog,(x),

|
@ log,(x) = Igi‘;gg
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= et = 12

= In(e®) = 3t=In <5>

:>t‘—1|nE
3 5
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With the natural logarithm, we can rewrite any exponential
function with base e if we so choose. Say, P(t) = Pyal. We
let k = In(a) so €X = aand hence

t
Poekt =P (ek> = Poat = P(t)

We call k the continuous growth/decay rate.
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Convert P(t) = 1000€%%% to the form Pyal.
Let a = €%9%. Then

P(t) = 10006 %" = 1000(%%)" = 10004".
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Convert P(t) = 500(1.06)! to the form Pyek.

P(t) = 500(1.06)! = 500" (1081,
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