

QUESTIONS

MATH 122: FINAL EXAM REVIEW - BINGO!

OUTLINE

MATH 122: FINAL EXAM REVIEW -BINGO!

QUESTIONS

QUESTIONS

The relative rate of change of P is

r =

QUESTIONS

A function is decreasing on an interval if the derivative is _____ on that interval.

QUESTIONS

 $\int_a^b f(x) dx =$

QUESTIONS

An function of the form $P(t) = P_0 e^{rt}$ models exponential growth when *r* is _____.

QUESTIONS

A point *p* is a critical point of a continuous function *f* if...

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

QUESTIONS

 $\int 7 dx =$

QUESTIONS

The slope of the line passing through $(3, \frac{1}{2})$ and (2, 1) is

m =

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへで

QUESTIONS

 $\int 36x^2 + 26x dx =$

QUESTIONS

Let $f(x) = -x^2 + 1$. Compute the average rate of change of *f* between x = 3 and x = 5.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

QUESTIONS

Differentiate

f(x) = 3x + 7

QUESTIONS

 $\int (x+2)e^{\frac{1}{2}x^2+2x+1}dx =$

QUESTIONS

Differentiate

$x \ln(x)$

QUESTIONS

A biologist observes a population with initial size 81. In two years, only 9 remain. Find an exponential function for the size of the population as a function of t years since the initial observation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

QUESTIONS

Differentiate

$$e^{\frac{1}{2}x^2+2x+1}$$

QUESTIONS

 $\int \frac{4x}{2x^2+7}dx =$

QUESTIONS

Find the *x*-intercepts of the function $f(x) = -2x^2 + 8x - 6$.

QUESTIONS

Differentiate

 $\frac{x}{e^x}$

QUESTIONS

 $\int 30e^{5x} - 2xe^{-x^2}dx =$

QUESTIONS

A biologist observes a second population with initial size 9. In two years, the size is 81. Find an exponential function for the size of the population as a function of t years since the initial observation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

QUESTIONS

Using the graph below, determine if $\int_{-3}^{3} f(x) dx$ is positive, negative, or approximately zero.

▲□▶▲□▶▲□▶▲□▶ □ のQで

QUESTIONS

Find any local maxima or minima of the function $f(x) = 10x^4 - 4x^5$. List any maxima first then minima.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

QUESTIONS

Find the area between the curves $y = \sqrt{x}$ and $y = x^2$.

QUESTIONS

Find the global maximum *value* and the global minimum *value* of $f(x) = 10x^4 - 4x^3$ on the interval [1,3].

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

QUESTIONS

Evaluate

 $\int_2^3 3x^2 + 7dx$