1. If f(x) is increasing, then f'(x) is ______. 2. f'(x) is negative if f(x) is ______. 3. f''(x) is positive if f(x) is ______. 4. f''(x) is negative if f'(x) is ______. 5. If f(x) is concave down, then f'(x) is ______. 6. If f'(x) is increasing, then f''(x) is ______. 7. If f'(x) is decreasing, then f(x) is ______. 8. If f'(x) > 0 and f''(x) < 0, then f(x) looks like _____. 9. If f(x) is an exponential decay curve, then f'(x) is _____ and 10. If f(x) has an inflection point, then f(x) has a change in ______. 11. If f(x) has a horizontal tangent, then f'(x) has a ______. 12. If f'(a) = 0, then f(x) has a ______ at ____. 13. If f'(x) has a change of sign and is always defined, then f(x) has either a _______ or ______. 14. If f(x) has a corner at x = a, then f'(a) is _____. 15. If f'(x) = 0 for all values of x, then f(x) is ______. 16. If f''(x) = 0 for all values of x, then f(x) is _____. 17. If f'(a) = 2 and g(x) = f(x) - 5, then g'(a) =______. 18. If f(x) is concave down everywhere, then -f(x) is _____.