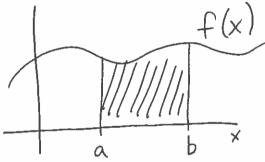
Exercise 1: A car is moving at a rate of $f(t) = t^2 + 2t$ meters per second for $0 \le t \le 6$ where t is given in seconds. Use a left and right Riemann sum with n = 3 subintervals do estimate $\int_0^6 f(t)dt$. Which is the overestimate and which is the underestimate? What are the units of $\int_0^6 f(t)dt$ and what does it represent?

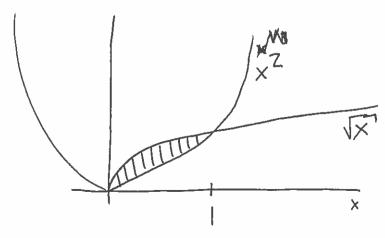
Exercise 2: Let f(t) be a continuous function on the interval [a, b]. In your own words, explain what $\int_a^b f(t)dt$ represents and how we estimate it.

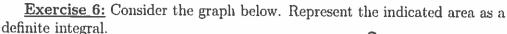
Exercise 3: The rate of change of a quantity is given by $g(t) = 1 - t^2$ for $0 \le t \le 8$. Find an overestimate for $\int_0^8 g(t)dt$ using a Riemann sum with n = 4 subintervals.

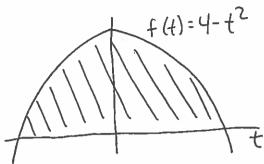
Exercise 4: Consider the graph below. Represent the indicated area as a definite integral.



Exercise 5: Consider the graph below. Represent the indicated area as a definite integral.







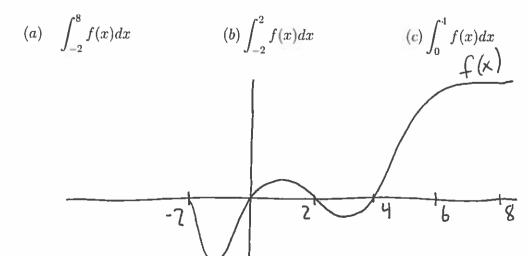
Exercise 7: Pollution is removed from a lake on day t at a rate of f(t) kg/day. Give the meaning of $\int_5^{15} f(t)dt = 4000$ and give units.

Exercise 8: Oil leaks out of a tanker at a rate of r = g(t) gallons per minute, where t is in minutes. Write a definite integral expressing the total quantity of oil which leaks out of the tanks in the first hour.

Exercise 9: A warehouse charges \$5 per day for every 10 cubic feet of space used for storage. The amount of cubic feet that one company uses on day t is given by g(t) = 3000 - 50t cubic feet per day. Use the graph of g(t) to determine the amount of money the company had to pay in the first 30 days.

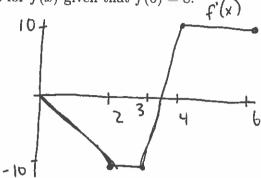
Exercise 10: Use the graph of the function g(x) = 4x - 8 to evaluate $\int_2^6 g(x)dx$.

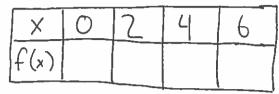
Exercise 11: Consider the graph of f(x) given below. Determine if each of the following is positive, negative or zero.



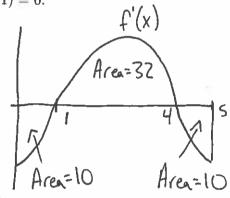
Exercise 12: The derivative f'(x) is graphed below. Fill in the table of

values for f(x) given that f(0) = 8.





Exercise 13: The derivative f'(x) is graphed below. Sketch a graph of f(x) and clearly indicate all values of the local maxima and minima given that f(1) = 0.



Exercise 14: Find the indefinite integral of $\int (5x+7)dx$.

Exercise 15: Find the indefinite integral of $\int (t^2 + 5t + 1)dt$.

Exercise 16: Find the indefinite integral of $\int (\frac{3}{x} - \frac{2}{l^2}) dx$.

Exercise 17: Find the indefinite integral of $\int (3\sqrt{w})dw$.

Exercise 18: Find the indefinite integral of $\int (e^x + \frac{1}{\sqrt{x}})dx$.

Exercise 19: Find the indefinite integral of $\int (100e^{4t})dt$.

Exercise 20: Find the indefinite integral of $\int (2\pi r)dr$.

Exercise 21: Find the derivative of $f(x) = e^{x^2}$.

Exercise 22: Use the previous problem to evaluate $\int_0^6 (2xe^{x^2})dx$.

Exercise 22: Find the derivative of $g(t) = t^2 \ln(t)$.

Exercise 23: Use the previous problem to evaluate $\int_1^4 (2t \ln(t) + t) dt$.

Exercise 24: Evaluate $\int_0^3 t^3 dt$.

Exercise 25: Evaluate $\int_4^9 \sqrt{x} dx$.

Exercise 26: Evaluate $\int_0^2 (3t^2 + 4t + 3)dt$.

Exercise 27: Evaluate $\int_0^1 2e^x dx$.

Exercise 28: Evaluate $\int_2^7 (\frac{1}{t} - \frac{2}{t^3}) dt$.

Exercise 29: Evaluate $\int_0^1 (y^2 + y^4) dy$.