Consider the function
$$f(x) = 2x^2 - 2$$

on the interval $[1, 3/2]$

1) Find the average rate of change of the function over the given interval.

AROC:
$$\frac{f(b)-f(a)}{b-a}$$

$$\frac{f(^{3}/_{2}) - f(1)}{^{3}/_{2} - 1} = \frac{2(^{3}/_{2})^{2} - 2 - (2(1)^{2} - 2)}{^{1}/_{2}} = 5$$

2) Find the instantoneous rate of charge at the leftmost endpoint of the given interval.

b	$\frac{f(b)-f(i)}{b-1}$	Since the values in the victor-hand column
,	$\frac{f(1,1)-f(1)}{1,1-1}=4.2$	opproach 21, we say
1.01	4.02	the instantaneous rate
1.001	4.002	$x=1 is \overline{14}$
1.0001	4,0002	