#! /usr/bin/env python3 # def wathen_test04 ( ): #*****************************************************************************80 # ## WATHEN_TEST04 times WATHEN_CSC assembly and solution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 September 2014 # # Author: # # John Burkardt # import numpy as np import platform import scipy.sparse.linalg as ssl import time from numpy.linalg import norm from r8vec_uniform_01 import r8vec_uniform_01 from wathen_csc import wathen_csc from wathen_order import wathen_order print ( '' ) print ( 'WATHEN_TEST04' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' For various problem sizes,' ) print ( ' time the assembly and factorization of a Wathen system' ) print ( ' using the WATHEN_CSC function.' ) print ( '' ) print ( ' NX Elements Nodes Assembly Factor Error' ) print ( '' ) nx = 1 ny = 1 for test in range ( 0, 7 ): # # Compute the number of unknowns. # n = wathen_order ( nx, ny ) # # Set up a random solution X1. # seed = 123456789 x1, seed = r8vec_uniform_01 ( n, seed ) # # Compute the matrix. # seed = 123456789 t0 = time.clock ( ) a, seed = wathen_csc ( nx, ny, seed ) t1 = ( time.clock ( ) - t0 ) # # Compute the corresponding right hand side B. # b = a.dot ( x1 ) # # Solve the system. # t0 = time.clock ( ) x2 = ssl.spsolve ( a, b ) t2 = ( time.clock ( ) - t0 ) # # Compute the norm of the solution error. # e = norm ( x1 - x2 ) # # Report. # print ( ' %4d %4d %6d %10.2e %10.2e %10.2e' % \ ( nx, nx * ny, n, t1, t2, e ) ) # # Ready for next iteration. # nx = nx * 2 ny = ny * 2 # # Terminate. # print ( '' ) print ( 'WATHEN_TEST04:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): wathen_test04 ( )