#! /usr/bin/env python # def p07_fx ( x ): #*****************************************************************************80 # ## P07_FX evaluates the function for problem 07. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, real X(*), the point at which F is to be evaluated. # # Output, real FX(*), the value of the function at X. # fx = x ** 3 return fx def p07_fx1 ( x ): #*****************************************************************************80 # ## P07_FX1 evaluates the derivative of the function for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the abscissa. # # Output, real FX1, the first derivative of the function at X. # fx1 = 3.0 * x ** 2 return fx1 def p07_fx2 ( x ): #*****************************************************************************80 # ## P07_FX2 evaluates the second derivative of the function for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the abscissa. # # Output, real FX2, the second derivative of the function at X. # fx2 = 6.0 * x return fx2 def p07_rang ( ): #*****************************************************************************80 # ## P07_RANG returns an interval bounding the root for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, real RANG(2), the minimum and maximum values of # an interval containing the root. # import numpy as np rang = np.array ( [ -1000.0, 999.0 ] ) return rang def p07_root ( i ): #*****************************************************************************80 # ## P07_ROOT returns a root for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, the index of the requested root. # # Output, real X, the value of the root. # x = 0.0 return x def p07_root_num ( ): #*****************************************************************************80 # ## P07_ROOT_NUM returns the number of known roots for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, integer ROOT_NUM, the number of known roots. # root_num = 1 return root_num def p07_start ( i ): #*****************************************************************************80 # ## P07_START returns a starting point for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, the index of the starting point. # # Output, real X, the starting point. # if ( ( i % 2 ) == 1 ): x = 1.0 elif ( ( i % 2 ) == 0 ): x = -1000.0 return x def p07_start_num ( ): #*****************************************************************************80 # ## P07_START_NUM returns the number of starting points for problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, integer START_NUM, the number of starting points. # start_num = 2 return start_num def p07_title ( title ): #*****************************************************************************80 # ## P07_TITLE returns the title of problem 7. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, string TITLE, the title of the problem. # title = 'F(X) = X^3, only linear Newton convergence.' return title