#! /usr/bin/env python # def p01_fx ( x ): #*****************************************************************************80 # ## P01_FX evaluates sin ( x ) - x / 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, real X(*), the point at which F is to be evaluated. # # Output, real FX(*), the value of the function at X. # import numpy as np fx = np.sin ( x ) - 0.5 * x return fx def p01_fx1 ( x ): #*****************************************************************************80 # ## P01_FX1 evaluates the derivative of the function for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the abscissa. # # Output, real FX1, the first derivative of the function at X. # import numpy as np fx1 = np.cos ( x ) - 0.5 return fx1 def p01_fx2 ( x ): #*****************************************************************************80 # ## P01_FX2 evaluates the second derivative of the function for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the abscissa. # # Output, real FX2, the second derivative of the function at X. # import numpy as np fx2 = - np.sin ( x ) return fx2 def p01_rang ( ): #*****************************************************************************80 # ## P01_RANG returns an interval bounding the root for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, real RANG(2), the minimum and maximum values of # an interval containing the root. # import numpy as np rang = np.array ( [ -1000.0, 1001.0 ] ) return rang def p01_root ( i ): #*****************************************************************************80 # ## P01_ROOT returns a root for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, the index of the requested root. # # Output, real X, the value of the root. # if ( ( i % 3 ) == 1 ): x = - 1.895494267033981 elif ( ( i % 3 ) == 2 ): x = 0.0 elif ( ( i % 3 ) == 0 ): x = 1.895494267033981 return x def p01_root_num ( ): #*****************************************************************************80 # ## P01_ROOT_NUM returns the number of known roots for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, integer ROOT_NUM, the number of known roots. # root_num = 3 return root_num def p01_start ( i ): #*****************************************************************************80 # ## P01_START returns a starting point for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, the index of the starting point. # # Output, real X, the starting point. # import numpy as np if ( ( i % 2 ) == 1 ): x = 0.5 * np.pi elif ( ( i % 2 ) == 0 ): x = np.pi return x def p01_start_num ( ): #*****************************************************************************80 # ## P01_START_NUM returns the number of starting points for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, integer START_NUM, the number of starting points. # start_num = 2 return start_num def p01_title ( title ): #*****************************************************************************80 # ## P01_TITLE returns the title of problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 December 2016 # # Author: # # John Burkardt # # Parameters: # # Output, string TITLE, the title of the problem. # title = 'F(X) = SIN(X) - 0.5 * X' return title