#! /usr/bin/env python # def gamma_inc_p_values ( n_data ): #*****************************************************************************80 # ## GAMMA_INC_P_VALUES values of the normalized incomplete Gamma function P(A,X) # # Discussion: # # The (normalized) incomplete Gamma function is defined as: # # P(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. # # With this definition, for all A and X, # # 0 <= P(A,X) <= 1 # # and # # P(A,oo) = 1.0 # # In Mathematica, the function can be evaluated by: # # 1 - GammaRegularized[A,X] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, the parameter of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 a_vec = np.array (( \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.10E+01, \ 0.10E+01, \ 0.10E+01, \ 0.11E+01, \ 0.11E+01, \ 0.11E+01, \ 0.20E+01, \ 0.20E+01, \ 0.20E+01, \ 0.60E+01, \ 0.60E+01, \ 0.11E+02, \ 0.26E+02, \ 0.41E+02 )) f_vec = (( \ 0.7382350532339351E+00, \ 0.9083579897300343E+00, \ 0.9886559833621947E+00, \ 0.3014646416966613E+00, \ 0.7793286380801532E+00, \ 0.9918490284064973E+00, \ 0.9516258196404043E-01, \ 0.6321205588285577E+00, \ 0.9932620530009145E+00, \ 0.7205974576054322E-01, \ 0.5891809618706485E+00, \ 0.9915368159845525E+00, \ 0.1018582711118352E-01, \ 0.4421745996289254E+00, \ 0.9927049442755639E+00, \ 0.4202103819530612E-01, \ 0.9796589705830716E+00, \ 0.9226039842296429E+00, \ 0.4470785799755852E+00, \ 0.7444549220718699E+00 )) x_vec = (( \ 0.30E-01, \ 0.30E+00, \ 0.15E+01, \ 0.75E-01, \ 0.75E+00, \ 0.35E+01, \ 0.10E+00, \ 0.10E+01, \ 0.50E+01, \ 0.10E+00, \ 0.10E+01, \ 0.50E+01, \ 0.15E+00, \ 0.15E+01, \ 0.70E+01, \ 0.25E+01, \ 0.12E+02, \ 0.16E+02, \ 0.25E+02, \ 0.45E+02 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, x, f def gamma_inc_p_values_test ( ): #*****************************************************************************80 # ## GAMMA_INC_P_VALUES_TEST demonstrates the use of GAMMA_INC_P_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'GAMMA_INC_P_VALUES_TEST:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' GAMMA_INC_P_VALUES stores values of an incomplete Gamma function.' ) print ( '' ) print ( ' A X GAMMA_INC_P(A,X)' ) print ( '' ) n_data = 0 while ( True ): n_data, a, x, f = gamma_inc_p_values ( n_data ) if ( n_data == 0 ): break print ( ' %12f %12f %24.16g' % ( a, x, f ) ) # # Terminate. # print ( '' ) print ( 'GAMMA_INC_P_VALUES_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gamma_inc_p_values_test ( ) timestamp ( )