#! /usr/bin/env python # def elliptic_inc_em_values ( n_data ): #*****************************************************************************80 # ## ELLIPTIC_INC_EM_VALUES: values of the incomplete elliptic integral E(PHI,M). # # Discussion: # # This is the incomplete elliptic integral of the second kind. # # E(PHI,M) = integral ( 0 <= T <= PHI ) # sqrt ( 1 - M * sin ( T )^2 ) dT # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 June 2018 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real PHI, M, the arguments. # # Output, real EM, the function value. # import numpy as np n_max = 20 em_vec = np.array ( [ \ 0.2732317284159052, \ 1.124749725099781, \ 0.6446601913679151, \ 0.3968902354370061, \ 0.06063960799944668, \ 0.08909411577948728, \ 0.532402014802015, \ 1.251888640660265, \ 1.28897116191626, \ 0.1481718153599732, \ 1.038090185639913, \ 0.1931275771541276, \ 0.3304419611986801, \ 0.167394796063963, \ 1.214501175324736, \ 0.9516560179840655, \ 1.203682959526176, \ 1.206426326185419, \ 0.2522791382096692, \ 0.6026499038720986 ] ) m_vec = np.array ( [ \ 8.450689756874594, \ 0.6039878267930615, \ 0.1794126658351454, \ 0.7095689301026752, \ 133.9643389059188, \ 47.96621393936416, \ 2.172070586163255, \ 0.002038130569431913, \ 0.3600036705339421, \ 0.6219544540067304, \ 0.8834215943508453, \ 0.2034290670379481, \ 5.772526076430922, \ 11.14853902343298, \ 0.2889238477277305, \ 0.7166617182589116, \ 0.4760623731559658, \ 0.6094948502068943, \ 8.902276887883076, \ 0.5434439226321253 ] ) phi_vec = np.array ( [ \ 0.3430906586047127, \ 1.302990057703935, \ 0.6523628380743488, \ 0.4046022501376546, \ 0.06884642871852312, \ 0.0969609046794745, \ 0.630370432896175, \ 1.252375418911598, \ 1.409796082144801, \ 0.1485105463502483, \ 1.349466184634646, \ 0.1933711786970301, \ 0.4088829927466769, \ 0.1785430666405224, \ 1.292588374416351, \ 1.087095515757691, \ 1.352794600489329, \ 1.432530166308616, \ 0.2968093345769761, \ 0.6235880396594726 ] ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 em = 0.0 m = 0.0 phi = 0.0 else: em = em_vec[n_data] m = m_vec[n_data] phi = phi_vec[n_data] n_data = n_data + 1 return n_data, phi, m, em def elliptic_inc_em_values_test ( ): #*****************************************************************************80 # ## ELLIPTIC_INC_EM_VALUES_TEST tests ELLIPTIC_INC_EM_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 June 2018 # # Author: # # John Burkardt # print ( '' ) print ( 'ELLIPTIC_INC_EM_VALUES_TEST:' ) print ( ' ELLIPTIC_INC_EM_VALUES stores values of' ) print ( ' the incomplete elliptic integral of the second' ) print ( ' kind, with parameters PHI, M.\n' ) print ( '' ) print ( ' PHI M E(PHI,M)' ) print ( '' ) n_data = 0 while ( True ): n_data, phi, m, em = elliptic_inc_em_values ( n_data ) if ( n_data == 0 ): break print ( ' %12f %12f %24.16f' % ( phi, m, em ) ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) elliptic_inc_em_values_test ( ) timestamp ( )