#! /usr/bin/env python # def elliptic_inc_ea_values ( n_data ): #*****************************************************************************80 # ## ELLIPTIC_INC_EA_VALUES: values of the incomplete elliptic integral E(PHI,A). # # Discussion: # # This is one form of the incomplete elliptic integral of the second kind. # # E(PHI,A) = integral ( 0 <= T <= PHI ) # sqrt ( 1 - sin^2 ( A ) * sin^2 ( T ) ) dT # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 June 2018 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real PHI, A, the arguments of the function. # # Output, real EA, the value of the function. # import numpy as np n_max = 20 a_vec = np.array ( [ \ 123.0821233267548, \ 11.26931745051486, \ -94.88806452075445, \ -99.71407853545323, \ 57.05881039324191, \ -19.71363287074183, \ 56.31230299738043, \ -91.55605346417718, \ -27.00654574696468, \ -169.2293728595904, \ 61.96859564803047, \ -158.7324398933148, \ 105.0883958999383, \ -48.95883872360177, \ -42.58568835110901, \ 11.65603284687828, \ -8.398113719173338, \ 17.69362213019626, \ 73.8803420626852, \ -69.82492339645128 ] ) ea_vec = np.array ( [ \ 0.3384181367348019, \ 1.292924624509506, \ 0.6074183768796306, \ 0.3939726730783567, \ 0.06880814097089803, \ 0.0969436473376824, \ 0.6025937791452033, \ 0.9500549494837583, \ 1.342783372140486, \ 0.1484915631401388, \ 1.085432887050926, \ 0.1932136916085597, \ 0.3983689593057807, \ 0.1780054133336934, \ 1.164525270273536, \ 1.080167047541845, \ 1.346684963830312, \ 1.402100272685504, \ 0.2928091845544553, \ 0.5889342583405707 ] ) phi_vec = np.array ( [ \ 0.3430906586047127, \ 1.302990057703935, \ 0.6523628380743488, \ 0.4046022501376546, \ 0.06884642871852312, \ 0.0969609046794745, \ 0.630370432896175, \ 1.252375418911598, \ 1.409796082144801, \ 0.1485105463502483, \ 1.349466184634646, \ 0.1933711786970301, \ 0.4088829927466769, \ 0.1785430666405224, \ 1.292588374416351, \ 1.087095515757691, \ 1.352794600489329, \ 1.432530166308616, \ 0.2968093345769761, \ 0.6235880396594726 ] ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 ea = 0.0 phi = 0.0 else: a = a_vec[n_data] ea = ea_vec[n_data] phi = phi_vec[n_data] n_data = n_data + 1 return n_data, phi, a, ea def elliptic_inc_ea_values_test ( ): #*****************************************************************************80 # ## ELLIPTIC_INC_EA_VALUES_TEST tests ELLIPTIC_INC_EA_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 June 2018 # # Author: # # John Burkardt # print ( '' ) print ( 'ELLIPTIC_INC_EA_VALUES_TEST:' ) print ( ' ELLIPTIC_INC_EA_VALUES stores values of' ) print ( ' the incomplete elliptic integral of the second' ) print ( ' kind, with parameters PHI, A.' ) print ( '' ) print ( ' PHI A E(PHI,A)' ) print ( '' ) n_data = 0 while ( True ): n_data, phi, a, ea = elliptic_inc_ea_values ( n_data ) if ( n_data == 0 ): break print ( ' %12f %12f %24.16f' % ( phi, a, ea ) ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) elliptic_inc_ea_values_test ( ) timestamp ( )