#! /usr/bin/env python # def elliptic_fk_values ( n_data ): #*****************************************************************************80 # ## ELLIPTIC_FK_VALUES returns values of the complete elliptic integral F(K). # # Discussion: # # This is one form of what is sometimes called the complete elliptic # integral of the first kind. # # The function is defined by the formula: # # F(K) = integral ( 0 <= T <= PI/2 ) # dT / sqrt ( 1 - K^2 * sin ( T )^2 ) # # In Mathematica, the function can be evaluated by: # # EllipticK[k^2] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2018 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( 1.570796326794897E+00, \ 1.591003453790792E+00, \ 1.612441348720219E+00, \ 1.635256732264580E+00, \ 1.659623598610528E+00, \ 1.685750354812596E+00, \ 1.713889448178791E+00, \ 1.744350597225613E+00, \ 1.777519371491253E+00, \ 1.813883936816983E+00, \ 1.854074677301372E+00, \ 1.898924910271554E+00, \ 1.949567749806026E+00, \ 2.007598398424376E+00, \ 2.075363135292469E+00, \ 2.156515647499643E+00, \ 2.257205326820854E+00, \ 2.389016486325580E+00, \ 2.578092113348173E+00, \ 2.908337248444552E+00 )) x_vec = np.array ( ( 0.0000000000000000E+00, \ 0.2236067977499790E+00, \ 0.3162277660168379E+00, \ 0.3872983346207417E+00, \ 0.4472135954999579E+00, \ 0.5000000000000000E+00, \ 0.5477225575051661E+00, \ 0.5916079783099616E+00, \ 0.6324555320336759E+00, \ 0.6708203932499369E+00, \ 0.7071067811865476E+00, \ 0.7416198487095663E+00, \ 0.7745966692414834E+00, \ 0.8062257748298550E+00, \ 0.8366600265340756E+00, \ 0.8660254037844386E+00, \ 0.8944271909999159E+00, \ 0.9219544457292888E+00, \ 0.9486832980505138E+00, \ 0.9746794344808963E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def elliptic_fk_values_test ( ): #*****************************************************************************80 # ## ELLIPTIC_FK_VALUES_TEST demonstrates the use of ELLIPTIC_FK_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2018 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'ELLIPTIC_FK_VALUES_TEST:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' ELLIPTIC_FK_VALUES stores values of the complete elliptic' ) print ( ' integral of the first kind, with parameter KM.' ) print ( '' ) print ( ' K F(K)' ) print ( '' ) n_data = 0 while ( True ): n_data, x, fx = elliptic_fk_values ( n_data ) if ( n_data == 0 ): break print ( ' %12f %24.16f' % ( x, fx ) ) # # Terminate. # print ( '' ) print ( 'ELLIPTIC_FK_VALUES_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) elliptic_fk_values_test ( ) timestamp ( )