#! /usr/bin/env python # def hermite_ek_compute ( n ): #*****************************************************************************80 # ## HERMITE_EK_COMPUTE computes a Gauss-Hermite quadrature rule. # # Discussion: # # The code uses an algorithm by Elhay and Kautsky. # # The abscissas are the zeros of the N-th order Hermite polynomial. # # The integral: # # integral ( -oo < x < +oo ) exp ( - x * x ) * f(x) dx # # The quadrature rule: # # sum ( 1 <= i <= n ) w(i) * f ( x(i) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 June 2015 # # Author: # # John Burkardt. # # Reference: # # Sylvan Elhay, Jaroslav Kautsky, # Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of # Interpolatory Quadrature, # ACM Transactions on Mathematical Software, # Volume 13, Number 4, December 1987, pages 399-415. # # Parameters: # # Input, integer N, the number of abscissas. # # Output, real X(N), the abscissas. # # Output, real W(N), the weights. # import numpy as np from imtqlx import imtqlx from r8_gamma import r8_gamma # # Define the zero-th moment. # zemu = r8_gamma ( 0.5 ) # # Define the Jacobi matrix. # bj = np.zeros ( n ) for i in range ( 0, n ): bj[i] = np.sqrt ( float ( i + 1 ) / 2.0 ) x = np.zeros ( n ) w = np.zeros ( n ) w[0] = np.sqrt ( zemu ) # # Diagonalize the Jacobi matrix. # x, w = imtqlx ( n, x, bj, w ) # # If N is odd, force the center X to be exactly 0. # if ( ( n % 2 ) == 1 ): x[(n-1)//2] = 0.0 for i in range ( 0, n ): w[i] = w[i] ** 2 return x, w def hermite_ek_compute_test ( ): #*****************************************************************************80 # ## HERMITE_EK_COMPUTE_TEST tests HERMITE_EK_COMPUTE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 June 2015 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'HERMITE_EK_COMPUTE_TEST' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' HERMITE_EK_COMPUTE computes a Hermite quadrature rule' ) print ( ' using the Elhay-Kautsky algorithm.' ) print ( '' ) print ( ' Index X W' ) for n in range ( 1, 11 ): x, w = hermite_ek_compute ( n ) print ( '' ) for i in range ( 0, n ): print ( ' %2d %24.16g %24.16g' % ( i, x[i], w[i] ) ) # # Terminate. # print ( '' ) print ( 'HERMITE_EK_COMPUTE_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_ek_compute_test ( ) timestamp ( )