#! /usr/bin/env python # def r8_erf ( x ): #*****************************************************************************80 # ## R8_ERF evaluates the error function. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # W J Cody, # Mathematics and Computer Science Division, # Argonne National Laboratory, # Argonne, Illinois, 60439. # # Reference: # # W J Cody, # "Rational Chebyshev approximations for the error function", # Mathematics of Computation, # 1969, pages 631-638. # # Parameters: # # Input, real X, the argument of the error function. # # Output, real VALUE, the value of the error function. # import numpy as np a = np.array ( ( \ 3.16112374387056560E+00, \ 1.13864154151050156E+02, \ 3.77485237685302021E+02, \ 3.20937758913846947E+03, \ 1.85777706184603153E-01 )) b = np.array ( ( \ 2.36012909523441209E+01, \ 2.44024637934444173E+02, \ 1.28261652607737228E+03, \ 2.84423683343917062E+03 )) c = np.array ( ( \ 5.64188496988670089E-01, \ 8.88314979438837594E+00, \ 6.61191906371416295E+01, \ 2.98635138197400131E+02, \ 8.81952221241769090E+02, \ 1.71204761263407058E+03, \ 2.05107837782607147E+03, \ 1.23033935479799725E+03, \ 2.15311535474403846E-08 )) d = np.array ( ( \ 1.57449261107098347E+01, \ 1.17693950891312499E+02, \ 5.37181101862009858E+02, \ 1.62138957456669019E+03, \ 3.29079923573345963E+03, \ 4.36261909014324716E+03, \ 3.43936767414372164E+03, \ 1.23033935480374942E+03 )) p = np.array ( ( \ 3.05326634961232344E-01, \ 3.60344899949804439E-01, \ 1.25781726111229246E-01, \ 1.60837851487422766E-02, \ 6.58749161529837803E-04, \ 1.63153871373020978E-02 )) q = np.array ( ( \ 2.56852019228982242E+00, \ 1.87295284992346047E+00, \ 5.27905102951428412E-01, \ 6.05183413124413191E-02, \ 2.33520497626869185E-03 )) sqrpi = 0.56418958354775628695E+00 thresh = 0.46875E+00 xbig = 26.543E+00 xsmall = 1.11E-16 xabs = abs ( x ) # # Evaluate ERF(X) for |X| <= 0.46875. # if ( xabs <= thresh ): if ( xsmall < xabs ): xsq = xabs * xabs else: xsq = 0.0 xnum = a[4] * xsq xden = xsq for i in range ( 0, 3 ): xnum = ( xnum + a[i] ) * xsq xden = ( xden + b[i] ) * xsq value = x * ( xnum + a[3] ) / ( xden + b[3] ) # # Evaluate ERFC(X) for 0.46875 <= |X| <= 4.0. # elif ( xabs <= 4.0 ): xnum = c[8] * xabs xden = xabs for i in range ( 0, 7 ): xnum = ( xnum + c[i] ) * xabs xden = ( xden + d[i] ) * xabs value = ( xnum + c[7] ) / ( xden + d[7] ) xsq = np.floor ( xabs * 16.0 ) / 16.0 delt = ( xabs - xsq ) * ( xabs + xsq ) value = np.exp ( - xsq * xsq ) * np.exp ( - delt ) * value value = ( 0.5 - value ) + 0.5 if ( x < 0.0 ): value = -value # # Evaluate ERFC(X) for 4.0 < |X|. # else: if ( xbig <= xabs ): if ( 0.0 < x ): value = 1.0 else: value = -1.0; else: xsq = 1.0 / ( xabs * xabs ) xnum = p[5] * xsq xden = xsq for i in range ( 0, 4 ): xnum = ( xnum + p[i] ) * xsq xden = ( xden + q[i] ) * xsq value = xsq * ( xnum + p[4] ) / ( xden + q[4] ) value = ( sqrpi - value ) / xabs xsq = np.floor ( xabs * 16.0 ) / 16.0 delt = ( xabs - xsq ) * ( xabs + xsq ) value = np.exp ( - xsq * xsq ) * np.exp ( - delt ) * value value = ( 0.5 - value ) + 0.5 if ( x < 0.0 ): value = -value; return value def r8_erf_test ( ): #*****************************************************************************80 # ## R8_ERF_TEST tests R8_ERF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # import platform from erf_values import erf_values from r8_erf import r8_erf print ( '' ) print ( 'R8_ERF_TEST:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' R8_ERF evaluates the error function.' ) print ( '' ) print ( ' X ERF(X) R8_ERF(X)' ) print ( '' ) n_data = 0 while ( True ): n_data, x, fx1 = erf_values ( n_data ) if ( n_data == 0 ): break fx2 = r8_erf ( x ) print ( ' %12g %24.16g %24.16g' % ( x, fx1, fx2 ) ) # # Terminate. # print ( '' ) print ( 'R8_ERF_TEST' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_erf_test ( ) timestamp ( )