#! /usr/bin/env python # def r8_normal_01_pdf ( rval ): #*****************************************************************************80 # ## R8_NORMAL_01_PDF evaluates the PDF of a standard normal distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 July 2015 # # Author: # # John Burkardt. # # Parameters: # # Input, real RVAL, the point where the PDF is evaluated. # # Output, real VALUE, the value of the PDF at RVAL. # import numpy as np value = np.exp ( - 0.5 * rval ** 2 ) / np.sqrt ( 2.0 * np.pi ) return value def r8_normal_01_pdf_values ( n_data ): #*****************************************************************************80 # ## R8_NORMAL_01_PDF_VALUES returns some values of the standard Normal PDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = NormalDistribution [ 0.0, 1.0 ] # PDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 July 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 10 f_vec = np.array ( ( \ 0.03155059887555709, \ 0.0005094586261557538, \ 0.01235886992552887, \ 0.353192862601275, \ 0.3171212685764107, \ 0.0009653372813755943, \ 0.06083856556197816, \ 0.003066504313116445, \ 0.0005116437388114821, \ 0.2246444116615346 )) x_vec = np.array ( ( \ -2.252653624140994, \ 3.650540612071437, \ 2.636073871461605, \ 0.4935635421351536, \ -0.6775433481923101, \ -3.471050120671749, \ -1.939377660943641, \ -3.120345651740235, \ -3.649368017767143, \ 1.0717256984193 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def r8_normal_01_pdf_test ( ): #*****************************************************************************80 # ## R8_NORMAL_01_PDF_TEST tests R8_NORMAL_01_PDF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 July 2015 # # Author: # # John Burkardt. # import platform print ( '' ) print ( 'R8_NORMAL_01_PDF_TEST:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' R8_NORMAL_01_PDF evaluates the standard normal pdf' ) print ( ' with mean = 0 and standard deviation = 1.' ) print ( '' ) print ( ' X PDF(0,1) PDF(0,1)' ) print ( ' tabulated computed' ) print ( '' ) n_data = 0 while ( True ): n_data, x, pdf1 = r8_normal_01_pdf_values ( n_data ) if ( n_data == 0 ): break pdf2 = r8_normal_01_pdf ( x ) print ( ' %24.16g %24.16g %24.16g' % ( x, pdf1, pdf2 ) ) # # Terminate. # print ( '' ) print ( 'R8_NORMAL_01_PDF_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_normal_01_pdf_test ( ) timestamp ( )