#! /usr/bin/env python # def normal_01_cdf_values ( n_data ): #*****************************************************************************80 # ## NORMAL_01_CDF_VALUES returns some values of the Normal 01 CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = NormalDistribution [ 0, 1 ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 17 f_vec = np.array ( (\ 0.5000000000000000E+00, \ 0.5398278372770290E+00, \ 0.5792597094391030E+00, \ 0.6179114221889526E+00, \ 0.6554217416103242E+00, \ 0.6914624612740131E+00, \ 0.7257468822499270E+00, \ 0.7580363477769270E+00, \ 0.7881446014166033E+00, \ 0.8159398746532405E+00, \ 0.8413447460685429E+00, \ 0.9331927987311419E+00, \ 0.9772498680518208E+00, \ 0.9937903346742239E+00, \ 0.9986501019683699E+00, \ 0.9997673709209645E+00, \ 0.9999683287581669E+00 )) x_vec = np.array ((\ 0.0000000000000000E+00, \ 0.1000000000000000E+00, \ 0.2000000000000000E+00, \ 0.3000000000000000E+00, \ 0.4000000000000000E+00, \ 0.5000000000000000E+00, \ 0.6000000000000000E+00, \ 0.7000000000000000E+00, \ 0.8000000000000000E+00, \ 0.9000000000000000E+00, \ 0.1000000000000000E+01, \ 0.1500000000000000E+01, \ 0.2000000000000000E+01, \ 0.2500000000000000E+01, \ 0.3000000000000000E+01, \ 0.3500000000000000E+01, \ 0.4000000000000000E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def normal_01_cdf_values_test ( ): #*****************************************************************************80 # ## NORMAL_01_CDF_VALUES_TEST demonstrates the use of NORMAL_01_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'NORMAL_01_CDF_VALUES_TEST:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' NORMAL_01_CDF_VALUES stores values of the unit normal CDF.' ) print ( '' ) print ( ' X NORMAL_01_CDF(X)' ) print ( '' ) n_data = 0 while ( True ): n_data, x, f = normal_01_cdf_values ( n_data ) if ( n_data == 0 ): break print ( ' %12f %24.16f' % ( x, f ) ) # # Terminate. # print ( '' ) print ( 'NORMAL_01_CDF_VALUES_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_01_cdf_values_test ( ) timestamp ( )