#! /usr/bin/env python # def elliptic_ek_values ( n_data ): #*****************************************************************************80 # ## ELLIPTIC_EK_VALUES returns values of the complete elliptic integral E(K). # # Discussion: # # This is one form of what is sometimes called the complete elliptic # integral of the second kind. # # The function is defined by the formula: # # E(K) = integral ( 0 <= T <= PI/2 ) # sqrt ( 1 - K^2 * sin ( T )^2 ) dT # # In Mathematica, the function can be evaluated by: # # EllipticE[k^2] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2018 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( \ 1.570796326794897E+00, \ 1.550973351780472E+00, \ 1.530757636897763E+00, \ 1.510121832092819E+00, \ 1.489035058095853E+00, \ 1.467462209339427E+00, \ 1.445363064412665E+00, \ 1.422691133490879E+00, \ 1.399392138897432E+00, \ 1.375401971871116E+00, \ 1.350643881047676E+00, \ 1.325024497958230E+00, \ 1.298428035046913E+00, \ 1.270707479650149E+00, \ 1.241670567945823E+00, \ 1.211056027568459E+00, \ 1.178489924327839E+00, \ 1.143395791883166E+00, \ 1.104774732704073E+00, \ 1.060473727766278E+00, \ 1.000000000000000E+00 )) x_vec = np.array (( \ 0.0000000000000000, \ 0.2236067977499790, \ 0.3162277660168379, \ 0.3872983346207417, \ 0.4472135954999579, \ 0.5000000000000000, \ 0.5477225575051661, \ 0.5916079783099616, \ 0.6324555320336759, \ 0.6708203932499369, \ 0.7071067811865476, \ 0.7416198487095663, \ 0.7745966692414834, \ 0.8062257748298550, \ 0.8366600265340756, \ 0.8660254037844386, \ 0.8944271909999159, \ 0.9219544457292888, \ 0.9486832980505138, \ 0.9746794344808963, \ 1.0000000000000000 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def elliptic_ek_values_test ( ): #*****************************************************************************80 # ## ELLIPTIC_EK_VALUES_TEST demonstrates the use of ELLIPTIC_EK_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 May 2018 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'ELLIPTIC_EK_VALUES_TEST:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' ELLIPTIC_EK_VALUES stores values of the complete elliptic' ) print ( ' integral of the second kind, with parameter K.' ) print ( '' ) print ( ' K E(K)' ) print ( '' ) n_data = 0 while ( True ): n_data, x, fx = elliptic_ek_values ( n_data ) if ( n_data == 0 ): break print ( ' %12f %24.16f' % ( x, fx ) ) # # Terminate. # print ( '' ) print ( 'ELLIPTIC_EK_VALUES_TEST:' ) print ( ' Normal end of execution.' ) return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) elliptic_ek_values_test ( ) timestamp ( )