16-Feb-2019 15:44:51 linpack_z_test MATLAB version Test linpack_z. TEST01 For a complex Hermitian positive definite matrix, ZCHDC computes the Cholesky decomposition. The number of equations is N = 3 The matrix A: ( 2.528100 0.000000) ( 2.134100 -0.214700) ( 2.418700 0.293200) ( 2.134100 0.214700) ( 3.037100 0.000000) ( 2.090500 1.150500) ( 2.418700 -0.293200) ( 2.090500 -1.150500) ( 2.763800 0.000000) Decompose the matrix. The Cholesky factor U: ( 1.590000 0.000000) ( 1.342201 -0.135031) ( 1.521195 0.184403) ( 0.000000 0.000000) ( 1.103341 0.000000) ( 0.066752 0.632248) ( 0.000000 0.000000) ( 0.000000 0.000000) ( 0.107555 0.000000) The product U^H * U: ( 2.528100 0.000000) ( 2.134100 -0.214700) ( 2.418700 0.293200) ( 2.134100 0.214700) ( 3.037100 0.000000) ( 2.090500 1.150500) ( 2.418700 -0.293200) ( 2.090500 -1.150500) ( 2.763800 0.000000) TEST02 For a double precision complex (C) Hermitian positive definite matrix, ZCHEX can shift columns in a Cholesky factorization. The number of equations is N = 3 The matrix A: (2.528100 0.000000) (2.134100 -0.214700) (2.418700 0.293200) (2.134100 0.214700) (3.037100 0.000000) (2.090500 1.150500) (2.418700 -0.293200) (2.090500 -1.150500) (2.763800 0.000000) The vector Z: (1.000000 0.000000) (2.000000 0.000000) (3.000000 0.000000) Decompose the matrix. The Cholesky factor U: (1.590000 0.000000) (1.342201 -0.135031) (1.521195 0.184403) (0.000000 0.000000) (1.103341 0.000000) (0.066752 0.632248) (0.000000 0.000000) (0.000000 0.000000) (0.107555 0.000000) Right circular shift columns K = 1 through L = 3 Left circular shift columns K = 2 through L = 3 The shifted Cholesky factor U: (1.650386 0.200063) (1.331611 -0.535689) (1.465536 0.000000) (0.000000 0.000000) (0.849985 -0.504457) (-0.135667 -0.590520) (0.000000 0.000000) (0.000000 0.000000) (-0.105082 -0.046296) The shifted vector Z: (1.285652 -0.722065) (1.472225 -0.393939) (3.081927 0.069380) The shifted product U' * U: (2.763800 0.000000) (2.090500 -1.150500) (2.418700 -0.293200) (2.090500 1.150500) (3.037100 0.000000) (2.134100 0.214700) (2.418700 0.293200) (2.134100 -0.214700) (2.528100 0.000000) TEST03 For a double precision complex (C) Hermitian matrix ZCHUD updates a Cholesky decomposition. ZTRSL solves a triangular linear system. In this example, we use ZCHUD to solve a least squares problem R * b = z. The number of equations is P = 20 RHS #1 1 (2.379383 20.767623) 2 (2.734442 2.995893) 3 (6.417954 -59.068878) 4 (-27.576569 28.604115) 5 (10.116850 15.477522) ...... .............. 16 (-20.981344 8.300412) 17 (23.802587 32.073475) 18 (-15.947093 -7.483698) 19 (6.255000 18.327665) 20 (4.857476 -5.740623) Solution vector #1 (Should be (1,1) (2,0), (3,1) (4,0) ...) 1 (1.000000 1.000000) 2 (2.000000 0.000000) 3 (3.000000 1.000000) 4 (4.000000 0.000000) 5 (5.000000 1.000000) ...... .............. 16 (16.000000 0.000000) 17 (17.000000 1.000000) 18 (18.000000 -0.000000) 19 (19.000000 1.000000) 20 (20.000000 -0.000000) TEST04 For a complex general band storage matrix: ZGBCO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The lower band is ML = 1 The upper band is MU = 1 The matrix A: (0.449860 -0.126667) (0.589627 0.260090) (0.000000 0.000000) (-0.843197 -0.344280) (0.391140 0.323400) (-0.236066 0.077459) (0.000000 0.000000) (-0.139466 -0.156136) (0.018599 -0.633214) Estimated reciprocal condition RCOND = 0.321778 TEST05 For a complex general band storage matrix: ZGBFA factors the matrix; ZGBSL solves a factored linear system. The matrix order is N = 3 The lower band is ML = 1 The upper band is MU = 1 The matrix: (0.449860 -0.126667) (0.589627 0.260090) (0.000000 0.000000) (-0.843197 -0.344280) (0.391140 0.323400) (-0.236066 0.077459) (0.000000 0.000000) (-0.139466 -0.156136) (0.018599 -0.633214) The right hand side B is (-0.126158 0.196128) (-1.289884 -0.181063) (0.219757 -0.212515) Computed Exact Solution Solution (0.892850 0.010314) (0.892850 0.010314) (-0.560465 0.763795) (-0.560465 0.763795) (0.306357 0.026275) (0.306357 0.026275) TEST06 For a complex general band storage matrix: ZGBFA factors the matrix. ZGBDI computes the determinant. The matrix order is N = 3 The lower band is ML = 1 The upper band is MU = 1 The matrix: (0.449860 -0.126667) (0.589627 0.260090) (0.000000 0.000000) (-0.843197 -0.344280) (0.391140 0.323400) (-0.236066 0.077459) (0.000000 0.000000) (-0.139466 -0.156136) (0.018599 -0.633214) Determinant = (3.162239 -3.918540) * 10^-1.000000 TEST07 For a complex general storage matrix: ZGECO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix: (0.449860 -0.126667) (0.391140 0.323400) (0.018599 -0.633214) (-0.843197 -0.344280) (-0.139466 -0.156136) (0.892850 0.010314) (0.589627 0.260090) (-0.236066 0.077459) (-0.560465 0.763795) Estimated reciprocal condition RCOND = 0.012294 TEST08 For a complex general storage matrix: ZGEFA factors the matrix. ZGESL solves a linear system. The matrix order is N = 3 The matrix: (0.449860 -0.126667) (0.391140 0.323400) (0.018599 -0.633214) (-0.843197 -0.344280) (-0.139466 -0.156136) (0.892850 0.010314) (0.589627 0.260090) (-0.236066 0.077459) (-0.560465 0.763795) The right hand side: (0.606261 -0.391702) (-0.128146 -0.078652) (-0.093079 0.576490) Computed Exact Solution Solution ( 0.306357 0.026275) ( 0.306357 0.026275) ( 0.500804 -0.779931) ( 0.500804 -0.779931) ( 0.350471 0.016555) ( 0.350471 0.016555) TEST09 For a complex general storage matrix: ZGEFA factors the matrix. ZGEDI computes the determinant or inverse. The matrix order is N = 3 The matrix: (0.449860 -0.126667) (0.391140 0.323400) (0.018599 -0.633214) (-0.843197 -0.344280) (-0.139466 -0.156136) (0.892850 0.010314) (0.589627 0.260090) (-0.236066 0.077459) (-0.560465 0.763795) Determinant = (-3.630740 -5.582360) * 10^-2.000000 The product inv(A) * A is (1.000000 0.000000) (-0.000000 0.000000) (0.000000 -0.000000) (-0.000000 -0.000000) (1.000000 -0.000000) (0.000000 0.000000) (-0.000000 0.000000) (0.000000 -0.000000) (1.000000 -0.000000) TEST10 For a complex tridiagonal matrix: ZGTSL solves a linear system. Matrix order N = 10 Computed Exact Solution Solution (1.000000 10.000000) (1.000000 10.000000) (2.000000 20.000000) (2.000000 20.000000) (3.000000 30.000000) (3.000000 30.000000) (4.000000 40.000000) (4.000000 40.000000) (5.000000 50.000000) (5.000000 50.000000) (6.000000 60.000000) (6.000000 60.000000) (7.000000 70.000000) (7.000000 70.000000) (8.000000 80.000000) (8.000000 80.000000) (9.000000 90.000000) (9.000000 90.000000) (10.000000 100.000000) (10.000000 100.000000) TEST11 For a double precision complex (C) Hermitian matrix (HI): ZHICO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A: (0.218418 0.000000) (0.468469 -0.858402) (-0.645830 0.380263) (0.468469 0.858402) (0.066119 0.000000) (0.391140 0.323400) (-0.645830 -0.380263) (0.391140 -0.323400) (0.043829 0.000000) Estimated reciprocal condition RCOND = 0.235919 TEST12 For a double precision complex (C) Hermitian matrix (HI): ZHIFA factors the matrix. ZHISL solves a linear system. The matrix order is N = 3 The matrix A: (0.218418 0.000000) (0.468469 -0.858402) (-0.645830 0.380263) (0.468469 0.858402) (0.066119 0.000000) (0.391140 0.323400) (-0.645830 -0.380263) (0.391140 -0.323400) (0.043829 0.000000) The right hand side B: (0.391451 1.349857) (0.418849 0.556889) (-0.437792 -0.182306) Computed Exact Solution Solution ( 0.737082 0.301125) ( 0.737082 0.301125) ( -0.545643 0.389631) ( -0.545643 0.389631) ( 0.254327 -0.830657) ( 0.254327 -0.830657) TEST13 For a double precision complex (C) Hermitian matrix (HI): ZHIFA factors the matrix. ZHIDI computes the determinant, inverse, or inertia. The matrix order is N = 3 The matrix A: (0.218418 0.000000) (0.468469 -0.858402) (-0.645830 0.380263) (0.468469 0.858402) (0.066119 0.000000) (0.391140 0.323400) (-0.645830 -0.380263) (0.391140 -0.323400) (0.043829 0.000000) Determinant = -8.700617 * 10^-1.000000 The inertia: 2 1 0 The product inv(A) * A: (1.000000 -0.000000) (0.000000 0.000000) (-0.000000 0.000000) (0.000000 0.000000) (1.000000 0.000000) (-0.000000 0.000000) (0.000000 -0.000000) (-0.000000 0.000000) (1.000000 0.000000) TEST14 For a double precision complex (C) Hermitian matrix using packed storage (HP), ZHPCO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A: (0.218418 0.000000) (0.468469 -0.858402) (0.589627 0.260090) (0.468469 0.858402) (0.561695 0.000000) (0.391140 0.323400) (0.589627 -0.260090) (0.391140 -0.323400) (0.043829 0.000000) Estimated reciprocal condition RCOND = 0.034006 TEST15 For a double precision complex (C) Hermitian matrix using packed storage (HP), ZHPFA factors the matrix. ZHPSL solves a linear system. The matrix order is N = 3 The matrix A: (0.218418 0.000000) (0.468469 -0.858402) (0.589627 0.260090) (0.468469 0.858402) (0.561695 0.000000) (0.391140 0.323400) (0.589627 -0.260090) (0.391140 -0.323400) (0.043829 0.000000) The right hand side B: (0.605839 0.293053) (0.148441 0.749981) (0.436654 0.278298) Computed Exact Solution Solution ( 0.737082 0.301125) ( 0.737082 0.301125) ( -0.545643 0.389631) ( -0.545643 0.389631) ( 0.254327 -0.830657) ( 0.254327 -0.830657) TEST16 For a double precision complex (C) Hermitian matrix using packed storage (HP), ZHPFA factors the matrix. ZHPDI computes the determinant, inverse, or inertia. The matrix order is N = 3 The matrix A: (0.218418 0.000000) (0.468469 -0.858402) (0.589627 0.260090) (0.468469 0.858402) (0.561695 0.000000) (0.391140 0.323400) (0.589627 -0.260090) (0.391140 -0.323400) (0.043829 0.000000) Determinant = 1.215350 * 10^-1.000000 The inertia: 1 2 0 The product inv(A) * A: (1.000000 0.000000) (-0.000000 0.000000) (0.000000 0.000000) (-0.000000 -0.000000) (1.000000 0.000000) (-0.000000 -0.000000) (0.000000 0.000000) (-0.000000 0.000000) (1.000000 -0.000000) TEST17 For a double precision complex (C) positive definite hermitian band matrix (PB), ZPBCO estimates the reciprocal condition number. The matrix size is N = 3 Estimate the condition. Reciprocal condition = 0.153588 TEST18 For a double precision complex (C) positive definite hermitian band matrix (PB), ZPBDI computes the determinant as det = MANTISSA * 10**EXPONENT Determinant = 6.095706 * 10^(1.000000) TEST19 For a double precision complex (C) positive definite hermitian band matrix (PB), ZPBFA computes the LU factors. ZPBSL solves a factored linear system. The matrix size is N = 3 Factor the matrix. Solve the linear system. The solution: (Should be roughly (1,2,3)): 1 ( 1.000000 0.000000) 2 ( 2.000000 -0.000000) 3 ( 3.000000 0.000000) TEST20 For a double precision complex (C) Hermitian positive definite matrix (PO), ZPOCO estimates the reciprocal condition number. The matrix order is N = 3 Estimate the condition. Reciprocal condition = 0.000602 TEST21 For a double precision complex (C) Hermitian positive definite matrix (PO), ZPOFA computes the LU factors, ZPODI computes the inverse or determinant. The matrix order is N = 3 Factor the matrix. Get the determinant and inverse. Determinant = 3.560195 * 10^(-2.000000) The product inverse(A) * A: (1.000000 -0.000000) (0.000000 -0.000000) (-0.000000 -0.000000) (1.000000 -0.000000) (0.000000 -0.000000) (-0.000000 -0.000000) (1.000000 -0.000000) (0.000000 -0.000000) (-0.000000 -0.000000) TEST22 For a double precision complex (C) Hermitian positive definite matrix (PO), ZPOFA computes the LU factors. ZPOSL solves a factored linear system. The matrix order is N = 3 Factor the matrix. Solve the linear system. The solution: (Should be (1+2i),(3+4i),(5+6i): 1 (1.000000 2.000000) 2 (3.000000 4.000000) 3 (5.000000 6.000000) TEST23 For a double precision complex (C) Hermitian positive definite packed matrix (PP), ZPPCO estimates the reciprocal condition number. The matrix order is N = 3 Estimate the condition number. Reciprocal condition number = 0.000602 TEST24 For a double precision complex (C) Hermitian positive definite packed matrix (PP), ZPPFA factors the matrix. ZPPDI computes the inverse or determinant. The matrix order is N = 3 Factor the matrix. Get the determinant and inverse. Determinant = 3.560195 * 10^(-2.000000) Matrix Inverse(A): (75.841258 0.000000) (-14.173568 -44.278249) (-74.082615 31.345869) (-14.173568 44.278249) (29.523297 0.000000) (-5.229922 -49.535662) (-74.082615 -31.345869) (-5.229922 49.535662) (86.445092 0.000000) Matrix Inverse(A) * A: (1.000000 -0.000000) (0.000000 -0.000000) (-0.000000 -0.000000) (-0.000000 0.000000) (1.000000 0.000000) (0.000000 0.000000) (-0.000000 -0.000000) (0.000000 -0.000000) (1.000000 0.000000) TEST25 For a double precision complex (C) Hermitian positive definite packed matrix (PP), ZPPFA factors the matrix. ZPPSL solves a factored linear system. The matrix order is N = 3 Factor the matrix. Solve the linear system. The solution: (Should be (1+2i),(3+4i),(5+6i): 1 (1.000000 2.000000) 2 (3.000000 4.000000) 3 (5.000000 6.000000) TEST26 For a double precision complex (C) Hermitian positive definite tridiagonal matrix (PT), ZPTSL factors and solves a linear system. The matrix order is N = 3 Factor the matrix and solve the system. The solution: (Should be roughly (1,2,3)): 1 (1.000000 0.000000) 2 (2.000000 -0.000000) 3 (3.000000 0.000000) ZQRDC_TEST ZQRDC computes the QR decomposition of a rectangular matrix, but does not return Q and R explicitly. The matrix row order is N = 3 The matrix column order is P = 3 Show how Q and R can be recovered using ZQRSL. The matrix A is (0.449860 -0.126667) (0.391140 0.323400) (0.018599 -0.633214) (-0.843197 -0.344280) (-0.139466 -0.156136) (0.892850 0.010314) (0.589627 0.260090) (-0.236066 0.077459) (-0.560465 0.763795) Decompose the matrix. The packed matrix A which describes Q and R: (-1.164366 0.327852) (-0.235472 -0.264983) (0.499111 -0.666416) (-0.593833 -0.462886) (0.105287 -0.475800) (-1.170334 0.142940) (0.410919 0.339078) (-0.378092 0.667708) (-0.098039 0.056129) The QRAUX vector, containing some additional information defining Q: (1.386356 0.000000) (1.641259 0.000000) (0.000000 0.000000) The R factor: (-1.164366 0.327852) (-0.235472 -0.264983) (0.499111 -0.666416) (0.000000 0.000000) (0.105287 -0.475800) (-1.170334 0.142940) (0.000000 0.000000) (0.000000 0.000000) (-0.098039 0.056129) The Q factor: (-0.386356 0.000000) (-0.309760 0.699406) (0.270091 0.438930) (0.593833 0.462886) (-0.275053 -0.196159) (0.408954 0.389517) (-0.410919 -0.339078) (0.115216 -0.536164) (0.613960 0.196159) The product Q * R: (0.449860 -0.126667) (0.391140 0.323400) (0.018599 -0.633214) (-0.843197 -0.344280) (-0.139466 -0.156136) (0.892850 0.010314) (0.589627 0.260090) (-0.236066 0.077459) (-0.560465 0.763795) TEST28 For a double precision complex (C) symmetric matrix (SI): ZSICO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A is (0.449860 -0.126667) (-0.843197 -0.344280) (0.589627 0.260090) (-0.843197 -0.344280) (0.391140 0.323400) (-0.139466 -0.156136) (0.589627 0.260090) (-0.139466 -0.156136) (-0.236066 0.077459) Estimated reciprocal condition RCOND = 0.047532 TEST29 For a double precision complex (C) symmetric matrix (SI): ZSIFA factors the matrix. ZSISL solves a linear system. The matrix order is N = 3 The matrix A is (0.449860 -0.126667) (-0.843197 -0.344280) (0.589627 0.260090) (-0.843197 -0.344280) (0.391140 0.323400) (-0.139466 -0.156136) (0.589627 0.260090) (-0.139466 -0.156136) (-0.236066 0.077459) The right hand side B is (-1.350259 -0.298717) (0.309629 0.801288) (0.125892 -0.733086) Computed Exact Solution Solution (0.018599 -0.633214) (0.018599 -0.633214) (0.892850 0.010314) (0.892850 0.010314) (-0.560465 0.763795) (-0.560465 0.763795) TEST30 For a double precision complex (C) symmetric matrix (SI): ZSIFA factors the matrix. ZSIDI computes the determinant or inverse. The matrix order is N = 3 The matrix A is (0.449860 -0.126667) (-0.843197 -0.344280) (0.589627 0.260090) (-0.843197 -0.344280) (0.391140 0.323400) (-0.139466 -0.156136) (0.589627 0.260090) (-0.139466 -0.156136) (-0.236066 0.077459) Determinant = (0.943843 0.996661) * 10^(-1.000000) The product inv(A) * A is (1.000000 -0.000000) (-0.000000 -0.000000) (0.000000 0.000000) (0.000000 -0.000000) (1.000000 0.000000) (0.000000 -0.000000) (0.000000 -0.000000) (-0.000000 0.000000) (1.000000 0.000000) TEST31 For a double precision complex (C) symmetric matrix in packed storage (SP), ZSPCO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A is (0.449860 -0.126667) (-0.843197 -0.344280) (0.391140 0.323400) (-0.843197 -0.344280) (0.589627 0.260090) (-0.139466 -0.156136) (0.391140 0.323400) (-0.139466 -0.156136) (-0.236066 0.077459) Estimated reciprocal condition RCOND = 0.057619 TEST32 For a double precision complex (C) symmetric matrix in packed storage (SP), ZSPFA factors the matrix. ZSPSL solves a linear system. The matrix order is N = 3 The matrix A is (0.449860 -0.126667) (-0.843197 -0.344280) (0.391140 0.323400) (-0.843197 -0.344280) (0.589627 0.260090) (-0.139466 -0.156136) (0.391140 0.323400) (-0.139466 -0.156136) (-0.236066 0.077459) The right hand side B is (-1.287369 -0.485804) (0.487501 0.746809) (0.162289 -0.606224) Computed Exact Solution Solution (0.018599 -0.633214) (0.018599 -0.633214) (0.892850 0.010314) (0.892850 0.010314) (-0.560465 0.763795) (-0.560465 0.763795) TEST33 For a double precision complex (C) symmetric matrix in packed storage (SP) ZSPFA factors the matrix. ZSPDI computes the determinant or inverse. The matrix order is N = 3 The matrix A is (0.449860 -0.126667) (-0.843197 -0.344280) (0.391140 0.323400) (-0.843197 -0.344280) (0.589627 0.260090) (-0.139466 -0.156136) (0.391140 0.323400) (-0.139466 -0.156136) (-0.236066 0.077459) Determinant = (0.788527 1.041451)*10^(-1.000000) The product inv(A) * A is (1.000000 -0.000000) (0.000000 0.000000) (-0.000000 -0.000000) (-0.000000 -0.000000) (1.000000 -0.000000) (0.000000 0.000000) (0.000000 0.000000) (-0.000000 -0.000000) (1.000000 0.000000) TEST34 For a double precision complex (C) general storage matrix, ZSVDC computes the singular value decomposition: A = U * S * V^H Matrix rows M = 4 Matrix columns N = 3 The matrix A: (0.449860 -0.126667) (-0.139466 -0.156136) (-0.560465 0.763795) (-0.843197 -0.344280) (-0.236066 0.077459) (0.306357 0.026275) (0.589627 0.260090) (0.018599 -0.633214) (0.500804 -0.779931) (0.391140 0.323400) (0.892850 0.010314) (0.350471 0.016555) Decompose the matrix. Singular values: 1 (1.729968 0.000000) 2 (1.300870 0.000000) 3 (0.560498 0.000000) Left Singular Vector Matrix U: (0.000610 -0.345582) (-0.646616 -0.103578) (-0.138959 0.473898) (0.370919 0.265070) (-0.351825 -0.092035) (0.472598 0.309029) (-0.397698 -0.047803) (0.389194 0.486806) (0.612414 0.327092) (0.187892 0.240285) (0.343893 0.349912) (0.078628 0.421944) (0.100854 0.506073) (-0.398919 0.011625) (-0.050548 -0.593639) (0.461647 0.079795) Right Singular Vector Matrix V: (0.590574 0.000000) (-0.585488 0.000000) (0.555362 0.000000) (0.016957 0.544490) (-0.373585 -0.044688) (-0.411883 -0.626125) (-0.161380 0.573081) (0.156257 0.700874) (0.336346 0.129477) The product U * S * V^H (should equal A): (0.449860 -0.126667) (-0.139466 -0.156136) (-0.560465 0.763795) (-0.843197 -0.344280) (-0.236066 0.077459) (0.306357 0.026275) (0.589627 0.260090) (0.018599 -0.633214) (0.500804 -0.779931) (0.391140 0.323400) (0.892850 0.010314) (0.350471 0.016555) TEST345 For a double precision complex (C) general storage matrix, ZSVDC computes the singular value decomposition: A = U * S * V^H Matrix rows M = 4 Matrix columns N = 4 The matrix A: (1.000000 0.000000) (1.000000 0.000000) (1.000000 0.000000) (1.000000 0.000000) (-0.000000 1.000000) (-1.000000 0.000000) (1.000000 0.000000) (0.000000 -1.000000) (-1.000000 0.000000) (-1.000000 0.000000) (1.000000 0.000000) (-1.000000 0.000000) (0.000000 -1.000000) (1.000000 0.000000) (1.000000 0.000000) (-0.000000 1.000000) Decompose the matrix. Singular values: 1 2.828427 2 2.000000 3 2.000000 4 0.000000 Left Singular Vector Matrix U: (0.353553 -0.353553) (0.421831 0.268438) (-0.353553 -0.353553) (-0.329795 -0.375813) (-0.353553 0.353553) (0.421831 0.268438) (-0.353553 -0.353553) (0.329795 0.375813) (-0.353553 0.353553) (0.421831 0.268438) (0.353553 0.353553) (-0.329795 -0.375813) (0.353553 -0.353553) (0.421831 0.268438) (0.353553 0.353553) (0.329795 0.375813) Right Singular Vector Matrix V: (0.500000 0.000000) (0.000000 0.000000) (-0.707107 0.000000) (-0.500000 0.000000) (0.500000 -0.500000) (0.000000 0.000000) (0.000000 0.000000) (0.500000 -0.500000) (0.000000 0.000000) (0.843661 0.536875) (-0.000000 0.000000) (0.000000 0.000000) (-0.000000 -0.500000) (0.000000 -0.000000) (-0.000000 -0.707107) (0.000000 0.500000) The product U * S * V^H (should equal A): (1.000000 0.000000) (1.000000 0.000000) (1.000000 -0.000000) (1.000000 0.000000) (-0.000000 1.000000) (-1.000000 0.000000) (1.000000 0.000000) (-0.000000 -1.000000) (-1.000000 -0.000000) (-1.000000 0.000000) (1.000000 0.000000) (-1.000000 0.000000) (0.000000 -1.000000) (1.000000 0.000000) (1.000000 0.000000) (-0.000000 1.000000) TEST35 For a double precision complex (C) triangular matrix (TR), ZTRCO estimates the condition. The matrix order is N = 3 Estimated reciprocal condition RCOND = 0.072614 TEST36 For a double precision complex (C) triangular matrix (TR), ZTRDI computes the determinant or inverse. The matrix order is N = 3 Determinant = (-7.367153 1.310818) * 10^(-2.000000) The product inv(A) * A is (1.000000 0.000000) (0.000000 0.000000) (0.000000 0.000000) (0.000000 0.000000) (1.000000 0.000000) (0.000000 0.000000) (0.000000 0.000000) (-0.000000 0.000000) (1.000000 0.000000) TEST37 For a double precision complex (C) triangular matrix (TR), ZTRSL solves a linear system. The matrix order is N = 10 Computed Exact Solution Solution (1.000000 10.000000) (1.000000 10.000000) (2.000000 20.000000) (2.000000 20.000000) (3.000000 30.000000) (3.000000 30.000000) (4.000000 40.000000) (4.000000 40.000000) (5.000000 50.000000) (5.000000 50.000000) (6.000000 60.000000) (6.000000 60.000000) (7.000000 70.000000) (7.000000 70.000000) (8.000000 80.000000) (8.000000 80.000000) (9.000000 90.000000) (9.000000 90.000000) (10.000000 100.000000) (10.000000 100.000000) linpack_z_test Normal end of execution. 16-Feb-2019 15:44:52