16-Feb-2019 14:34:10 linpack_d_test MATLAB version Test linpack_d. TEST01 For double precision, general storage, DCHDC computes the Cholesky decomposition. The number of equations is N = 4 The matrix A: 2.000000 -1.000000 0.000000 0.000000 0.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 2.000000 Decompose the matrix. The Cholesky factor U: 1.414214 -0.707107 0.000000 0.000000 0.000000 1.224745 -0.816497 0.000000 0.000000 0.000000 1.154701 -0.866025 0.000000 0.000000 0.000000 1.118034 The product U' * U: 2.000000 -1.000000 0.000000 0.000000 -1.000000 2.000000 -1.000000 0.000000 0.000000 -1.000000 2.000000 -1.000000 0.000000 0.000000 -1.000000 2.000000 TEST02 For double precision, general storage, DCHEX can shift columns in a Cholesky factorization. The number of equations is N = 5 The matrix A: 2.000000 -1.000000 0.000000 0.000000 0.000000 0.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 0.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 0.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 0.000000 2.000000 The vector Z: 1.000000 2.000000 3.000000 4.000000 5.000000 Decompose the matrix. The Cholesky factor U: 1.414214 -0.707107 0.000000 0.000000 0.000000 0.000000 1.224745 -0.816497 0.000000 0.000000 0.000000 0.000000 1.154701 -0.866025 0.000000 0.000000 0.000000 0.000000 1.118034 -0.894427 0.000000 0.000000 0.000000 0.000000 1.095445 Right circular shift columns K = 1 through L = 3 Left circular shift columns K+1 = 2 through L = 3 The shifted Cholesky factor U: 1.414214 -0.707107 0.000000 -0.707107 0.000000 0.000000 -1.224745 0.816497 0.408248 -0.000000 0.000000 0.000000 1.154701 -0.288675 0.000000 0.000000 0.000000 0.000000 1.118034 -0.894427 0.000000 0.000000 0.000000 0.000000 1.095445 The shifted vector Z: 1.294789 -2.170197 2.759306 4.000000 5.000000 The shifted product U' * U: 2.000000 -1.000000 0.000000 -1.000000 0.000000 -1.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 -1.000000 2.000000 0.000000 0.000000 -1.000000 0.000000 0.000000 2.000000 -1.000000 0.000000 0.000000 0.000000 -1.000000 2.000000 TEST03 For double precision, general storage, DCHUD updates a Cholesky decomposition. In this example, we use DCHUD to solve a least squares problem R * b = z. The number of equations is P = 20 Solution vector # 1 (Should be (1,2,3...,n)) 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 16 16.000000 17 17.000000 18 18.000000 19 19.000000 20 20.000000 TEST04 For a general banded matrix, DGBCO estimates the reciprocal condition number. The matrix size is N = 10 The bandwidth of the matrix is 3 Estimate the condition. Estimated reciprocal condition = 0.023302 TEST05 For a general banded matrix, DGBFA factors the matrix, DGBSL solves a factored linear system. The matrix size is N = 10 The bandwidth of the matrix is 3 Factor the matrix. Solve the linear system. The first and last 5 entries of the solution: (All should be 1): 1 1.000000 2 1.000000 3 1.000000 4 1.000000 5 1.000000 ...... .............. 6 1.000000 7 1.000000 8 1.000000 9 1.000000 10 1.000000 TEST06 For a general banded matrix, DGBFA factors the matrix, DGBDI computes the determinant as det = MANTISSA * 10^EXPONENT Find the determinant of the -1,2,-1 matrix for N = 2, 4, 8, 16, 32, 64, 128. (For this matrix, det ( A ) = N + 1.) The bandwidth of the matrix is 3 N Mantissa Exponent 2 3.000000 0.000000 4 5.000000 0.000000 8 9.000000 0.000000 16 1.700000 1.000000 32 3.300000 1.000000 64 6.500000 1.000000 128 1.290000 2.000000 TEST07 For a general banded matrix, DGBFA factors the matrix, DGBSL solves a factored linear system. The matrix size is N = 100 The bandwidth of the matrix is 51 Factor the matrix. Solve the linear system. The first and last 5 entries of the solution: (All should be 1): 1 1.000000 2 1.000000 3 1.000000 4 1.000000 5 1.000000 ...... .............. 96 1.000000 97 1.000000 98 1.000000 99 1.000000 100 1.000000 TEST08 For a general matrix, DGECO computes the LU factors and computes its reciprocal condition number; DGESL solves a factored linear system. The matrix size is N = 3 Factor the matrix. The reciprocal matrix condition number = 0.024645 Solve the linear system. Solution returned by DGESL (Should be (1,1,1)) 1.000000 1.000000 1.000000 Call DGESL for a new right hand side for the same, factored matrix. Solve a linear system. Solution returned by DGESL (should be (1,0,0)) 1.000000 0.000000 0.000000 Call DGESL for transposed problem. Call DGESL to solve a transposed linear system. Solution returned by DGESL (should be (-1,0,1)) -1.000000 -0.000000 1.000000 TEST09 For a general matrix, DGEFA computes the LU factors; DGEDI computes the inverse and determinant of a factored matrix. The matrix size is N = 3 Factor the matrix Get the inverse and determinant The determinant = 2.700000 * 10 ^ 1.000000 The inverse matrix: -1.777778 0.888889 -0.111111 1.555556 -0.777778 0.222222 -0.111111 0.222222 -0.111111 TEST10 For a general matrix, DGEFA computes the LU factors; DGESL solves a factored linear system; The number of equations is N = 3 The matrix A: 1.000000 2.000000 3.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 The right hand side B is 6.000000 15.000000 15.000000 Factor the matrix Solve the linear system. DGESL returns the solution: (Should be (1,1,1)) 1.000000 1.000000 1.000000 TEST11 For a general matrix, DGEFA computes the LU factors; DGESL solves a factored linear system; The matrix size is N = 100 Factor the matrix Solve the linear system. The first and last five entries of the solution: (All of them should be 1.) 1 1.000000 2 1.000000 3 1.000000 4 1.000000 5 1.000000 ...... .............. 96 1.000000 97 1.000000 98 1.000000 99 1.000000 100 1.000000 TEST12 For a general tridiagonal matrix, DGTSL factors and solves a linear system. The matrix size is N = 100 Factor the matrix and solve the system. The first and last 5 entries of the solution: (Should be 1,2,3,4,5,...,n,n-1): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 96 96.000000 97 97.000000 98 98.000000 99 99.000000 100 100.000000 TEST13 For a positive definite symmetric band matrix, DPBCO estimates the reciprocal condition number. The matrix size is N = 10 Estimate the condition. Reciprocal condition = 0.020492 TEST14 For a positive definite symmetric band matrix, DPBDI computes the determinant as det = MANTISSA * 10**EXPONENT Find the determinant of the -1,2,-1 matrix for N = 2, 4, 8, 16, 32, 64, 128. (For this matrix, det ( A ) = N + 1.) The bandwidth of the matrix is 3 N Mantissa Exponent 2 3.000000 0.000000 4 5.000000 0.000000 8 9.000000 0.000000 16 1.700000 1.000000 32 3.300000 1.000000 64 6.500000 1.000000 128 1.290000 2.000000 TEST15 For a positive definite symmetric band matrix, DPBFA computes the LU factors. DPBSL solves a factored linear system. The matrix size is N = 10 Factor the matrix. Solve the linear system. The first and last 5 entries of the solution: (All should be 1): 1 1.000000 2 1.000000 3 1.000000 4 1.000000 5 1.000000 ...... .............. 6 1.000000 7 1.000000 8 1.000000 9 1.000000 10 1.000000 TEST16 For a positive definite symmetric matrix, DPOCO estimates the reciprocal condition number. The matrix size is N = 5 Estimate the condition. Reciprocal condition = 0.067568 TEST17 For a positive definite symmetric matrix, DPOFA computes the LU factors, DPODI computes the inverse or determinant. The matrix size is N = 5 Factor the matrix. Get the determinant and inverse. Determinant = 6.000000 * 10 ^ 0.000000 First row of inverse: 0.833333 0.666667 0.500000 0.333333 0.166667 TEST18 For a positive definite symmetric matrix, DPOFA computes the LU factors. DPOSL solves a factored linear system. The matrix size is N = 20 Factor the matrix. Solve the linear system. The first and last five entries of the solution: (Should be 1,2,3,4,5,...,n-1,n.) 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 16 16.000000 17 17.000000 18 18.000000 19 19.000000 20 20.000000 TEST19 For a positive definite symmetric packed matrix, DPPCO estimates the reciprocal condition number. The matrix size is N = 5 Estimate the condition number. Reciprocal condition number = 0.067568 TEST20 For a positive definite symmetric packed matrix, DPPFA factors the matrix. DPPDI computes the inverse or determinant. The matrix size is N = 5 Factor the matrix. Get the determinant and inverse. Determinant = 6.000000 * 10 ^ 0.000000 Inverse: 0.833333 0.666667 0.500000 0.333333 0.166667 0.666667 1.333333 1.000000 0.666667 0.333333 0.500000 1.000000 1.500000 1.000000 0.500000 0.333333 0.666667 1.000000 1.333333 0.666667 0.166667 0.333333 0.500000 0.666667 0.833333 TEST21 For a positive definite symmetric packed matrix, DPPFA factors the matrix. DPPSL solves a factored linear system. The matrix size is N = 20 Factor the matrix. Solve the linear system. The first and last five entries of the solution: (Should be 1,2,3,4,5,...,n-1,n.) 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 16 16.000000 17 17.000000 18 18.000000 19 19.000000 20 20.000000 TEST22 For a positive definite symmetric tridiagonal matrix, DPTSL factors and solves a linear system. The matrix size is N = 20 Factor the matrix and solve the system. The first and last five entries of the solution: (Should be 1,2,3,4,5,...,n-1,n): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 16 16.000000 17 17.000000 18 18.000000 19 19.000000 20 20.000000 DQRDC_TEST DQRDC computes the QR decomposition of a rectangular matrix, but does not return Q and R explicitly. Show how Q and R can be recovered using SQRSL. The original matrix A: 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 1.000000 Decompose the matrix. The packed matrix A which describes Q and R: -1.414214 -0.707107 -0.707107 0.707107 1.224745 0.408248 0.000000 -0.816497 1.154701 The QRAUX vector, containing some additional information defining Q: 1.707107 1.577350 0.000000 The R factor: -1.414214 -0.707107 -0.707107 0.000000 1.224745 0.408248 0.000000 0.000000 1.154701 The Q factor: -0.707107 0.408248 -0.577350 -0.707107 -0.408248 0.577350 0.000000 0.816497 0.577350 The product Q * R: 1.000000 1.000000 -0.000000 1.000000 -0.000000 1.000000 0.000000 1.000000 1.000000 DQRSL_TEST DQRSL solves a rectangular linear system A*x=b in the least squares sense after A has been factored by DQRDC. The matrix A: 1.000000 1.000000 1.000000 1.000000 2.000000 4.000000 1.000000 3.000000 9.000000 1.000000 4.000000 16.000000 1.000000 5.000000 25.000000 Decompose the matrix. X X(expected): -3.02 -3.02 4.49143 4.49143 -0.728571 -0.728571 TEST24 For a symmetric indefinite matrix, DSICO estimates the reciprocal condition number. The matrix size is N = 100 Estimate the condition. Estimated reciprocal condition = 0.000245 TEST25 For a symmetric indefinite matrix, DSIFA factors the matrix, DSISL solves a factored linear system, The matrix size is N = 100 Factor the matrix. Solve the linear system. The first and last five entries of the solution: (Should be 1,2,3,4,5,...,n-1,n): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 96 96.000000 97 97.000000 98 98.000000 99 99.000000 100 100.000000 TEST26 For a symmetric indefinite packed matrix, DSPCO estimates the reciprocal condition number. The matrix size is N = 100 Estimate the condition. Estimated reciprocal condition = 0.000245 TEST27 For a symmetric indefinite packed matrix, DSPFA factors the matrix, DSPSL solves a factored linear system. The matrix size is N = 100 Factor the matrix. Solve the linear system. The first and last five entries of the solution: (Should be 1,2,3,4,5,...,n-1,n): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 ...... .............. 96 96.000000 97 97.000000 98 98.000000 99 99.000000 100 100.000000 DSVDC_TEST For an MxN matrix A in general storage, DSVDC computes the singular value decomposition: A = U * S * V' Matrix rows M = 6 Matrix columns N = 4 The matrix A: 0.218418 0.257578 0.401306 0.094545 0.956318 0.109957 0.754673 0.013617 0.829509 0.043829 0.797287 0.859097 0.561695 0.633966 0.001838 0.840847 0.415307 0.061727 0.897504 0.123104 0.066119 0.449539 0.350752 0.007512 Decompose the matrix. Singular values: 1 2.228984 2 1.031751 3 0.606304 4 0.441098 Left Singular Vector Matrix U: -0.214893 0.070269 0.351627 0.141528 -0.569749 -0.693252 -0.493857 0.399434 0.040847 -0.765911 -0.032738 0.084834 -0.621035 -0.122005 -0.541178 0.351135 -0.341570 0.258051 -0.378730 -0.803888 0.211678 -0.195040 0.319591 -0.159192 -0.394186 0.417037 0.113540 0.424627 0.652486 -0.227508 -0.159444 0.021775 0.723960 0.227388 -0.172534 0.607053 Right Singular Vector Matrix V: -0.637670 0.018636 -0.196482 -0.744597 -0.212197 -0.404587 0.887338 -0.062549 -0.612157 0.593962 0.159466 0.497035 -0.416669 -0.695105 -0.385482 0.441157 The product U * S * V' (should equal A): 0.218418 0.257578 0.401306 0.094545 0.956318 0.109957 0.754673 0.013617 0.829509 0.043829 0.797287 0.859097 0.561695 0.633966 0.001838 0.840847 0.415307 0.061727 0.897504 0.123104 0.066119 0.449539 0.350752 0.007512 TEST29 For a triangular matrix, DTRCO computes the LU factors and computes its reciprocal condition number. The matrix size is N = 5 Lower triangular matrix A: 0.218418 0.000000 0.000000 0.000000 0.000000 0.956318 0.257578 0.000000 0.000000 0.000000 0.829509 0.109957 0.401306 0.000000 0.000000 0.561695 0.043829 0.754673 0.094545 0.000000 0.415307 0.633966 0.797287 0.013617 0.260303 Estimate the condition: The reciprocal condition number = 0.004820 Upper triangular matrix A: 0.912484 0.692066 0.597917 0.574366 0.714471 0.000000 0.561662 0.188955 0.367027 0.117707 0.000000 0.000000 0.761492 0.617205 0.299329 0.000000 0.000000 0.000000 0.361529 0.825003 0.000000 0.000000 0.000000 0.000000 0.824660 Estimate the condition: The reciprocal condition number = 0.061401 TEST30 For a triangular matrix, DTRDI computes the determinant or inverse. The matrix size is N = 5 Lower triangular matrix A: 0.218418 0.000000 0.000000 0.000000 0.000000 0.956318 0.257578 0.000000 0.000000 0.000000 0.829509 0.109957 0.401306 0.000000 0.000000 0.561695 0.043829 0.754673 0.094545 0.000000 0.415307 0.633966 0.797287 0.013617 0.260303 The determinant = 5.556355 * 10 ^ -4.000000 The inverse matrix: 4.578371 0.000000 0.000000 0.000000 0.000000 -16.998269 3.882322 0.000000 0.000000 0.000000 35.541072 0.273997 2.491862 0.000000 0.000000 -151.322957 1.341275 7.982183 10.577002 0.000000 779.719256 2.778914 3.102397 0.052312 3.841677 Upper triangular matrix A: 0.912484 0.692066 0.597917 0.574366 0.714471 0.000000 0.561662 0.188955 0.367027 0.117707 0.000000 0.000000 0.761492 0.617205 0.299329 0.000000 0.000000 0.000000 0.361529 0.825003 0.000000 0.000000 0.000000 0.000000 0.824660 The determinant = 1.163546 * 10 ^ -1.000000 The inverse matrix: 1.095910 -1.350353 -0.525426 0.526812 -1.093052 0.000000 1.780429 -0.441791 -1.053275 0.959944 0.000000 0.000000 1.313211 -2.241925 1.766198 0.000000 0.000000 0.000000 2.766032 -2.767182 0.000000 0.000000 0.000000 0.000000 1.212621 TEST31 For a triangular matrix, DTRSL solves a linear system. The matrix size is N = 5 For a lower triangular matrix A, solve A * x = b The solution (should be 1,2,3,4,5): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 For a lower triangular matrix A, solve A' * x = b The solution (should be 1,2,3,4,5): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 For an upper triangular matrix A, solve A * x = b The solution (should be 1,2,3,4,5): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 For an upper triangular matrix A, solve A' * x = b The solution (should be 1,2,3,4,5): 1 1.000000 2 2.000000 3 3.000000 4 4.000000 5 5.000000 linpack_d_test Normal end of execution. 16-Feb-2019 14:34:13