program main !*****************************************************************************80 ! !! MAIN is the main program for TETRAHEDRON_PROPERTIES. ! ! Discussion: ! ! TETRAHEDRON_PROPERTIES reports properties of a tetrahedron. ! ! Usage: ! ! tetrahedron_properties filename ! ! where "filename" is a file containing the coordinates of the vertices. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 May 2014 ! ! Author: ! ! John Burkardt ! implicit none real ( kind = 8 ) ab(3) real ( kind = 8 ) ac(3) real ( kind = 8 ) ad(3) integer ( kind = 4 ) arg_num real ( kind = 8 ) bc(3) real ( kind = 8 ) bd(3) real ( kind = 8 ) cd(3) real ( kind = 8 ) centroid(3) real ( kind = 8 ) circum_center(3) real ( kind = 8 ) circum_radius real ( kind = 8 ) dihedral_angles(6) integer ( kind = 4 ) dim_num real ( kind = 8 ) edge_length(6) real ( kind = 8 ) face_angles(3,4) real ( kind = 8 ) face_areas(4) integer ( kind = 4 ) i integer ( kind = 4 ) iarg integer ( kind = 4 ) iargc real ( kind = 8 ) in_center(3) real ( kind = 8 ) in_radius character ( len = 255 ) node_filename integer ( kind = 4 ) node_num real ( kind = 8 ) node_xyz(3,4) real ( kind = 8 ) quality1 real ( kind = 8 ) quality2 real ( kind = 8 ) quality3 real ( kind = 8 ) quality4 real ( kind = 8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = 8 ) solid_angles(4) real ( kind = 8 ) volume call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TETRAHEDRON_PROPERTIES:' write ( *, '(a)' ) ' FORTRAN90 version:' write ( *, '(a)' ) ' Determine properties of a tetrahedron.' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! Commandline argument #1 is the file name ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, node_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TETRAHEDRON_PROPERTIES:' write ( *, '(a)' ) ' Please enter the name of the node coordinate file.' read ( *, '(a)' ) node_filename end if ! ! Read the node data. ! call r8mat_header_read ( node_filename, dim_num, node_num ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( node_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension DIM_NUM = ', dim_num write ( *, '(a,i8)' ) ' Number of points NODE_NUM = ', node_num if ( dim_num /= 3 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TETRAHEDRON_PROPERTIES - Fatal error!' write ( *, '(a)' ) ' Dataset must have spatial dimension 3.' stop end if if ( node_num /= 4 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TETRAHEDRON_PROPERTIES - Fatal error!' write ( *, '(a)' ) ' Dataset must have 4 nodes.' stop end if call r8mat_data_read ( node_filename, dim_num, node_num, node_xyz ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' & // trim ( node_filename ) //'".' call r8mat_transpose_print ( dim_num, node_num, node_xyz, & ' Node coordinates:' ) ! ! CENTROID ! call tetrahedron_centroid ( node_xyz, centroid ) write ( *, '(a)' ) ' ' write ( *, '(a,3g14.6)' ) ' CENTROID: ', centroid(1:3) ! ! CIRCUMSPHERE ! call tetrahedron_circumsphere ( node_xyz, circum_radius, circum_center ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' CIRCUM_RADIUS = ', circum_radius write ( *, '(a,3g14.6)' ) ' CIRCUM_CENTER: ', circum_center(1:3) ! ! DIHEDRAL ANGLES ! call tetrahedron_dihedral_angles ( node_xyz, dihedral_angles ) call r8vec_print ( 6, dihedral_angles, ' DIHEDRAL_ANGLES (radians)' ) dihedral_angles(1:6) = dihedral_angles(1:6) * 180.0D+00 / r8_pi call r8vec_print ( 6, dihedral_angles, ' DIHEDRAL_ANGLES (degrees)' ) ! ! EDGES ! call tetrahedron_edges ( node_xyz, ab, ac, ad, bc, bd, cd ) write ( *, '(a)' ) '' call r8vec_transpose_print ( 3, ab, ' EDGE AB:' ) call r8vec_transpose_print ( 3, ac, ' EDGE AC:' ) call r8vec_transpose_print ( 3, ad, ' EDGE AD:' ) call r8vec_transpose_print ( 3, bc, ' EDGE BC:' ) call r8vec_transpose_print ( 3, bd, ' EDGE BD:' ) call r8vec_transpose_print ( 3, cd, ' EDGE CD:' ) ! ! EDGE LENGTHS ! call tetrahedron_edge_length ( node_xyz, edge_length ) call r8vec_print ( 6, edge_length, ' EDGE_LENGTHS' ) ! ! FACE ANGLES ! call tetrahedron_face_angles ( node_xyz, face_angles ) call r8mat_transpose_print ( 3, 4, face_angles, ' FACE_ANGLES (radians)' ) face_angles(1:3,1:4) = face_angles(1:3,1:4) * 180.0D+00 / r8_pi call r8mat_transpose_print ( 3, 4, face_angles, ' FACE_ANGLES (degrees)' ) ! ! FACE AREAS ! call tetrahedron_face_areas ( node_xyz, face_areas ) call r8vec_print ( 4, face_areas, ' FACE_AREAS' ) ! ! INSPHERE ! call tetrahedron_insphere ( node_xyz, in_radius, in_center ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' IN_RADIUS = ', in_radius write ( *, '(a,3g14.6)' ) ' IN_CENTER: ', in_center(1:3) ! ! QUALITY1 ! call tetrahedron_quality1 ( node_xyz, quality1 ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' QUALITY1 = ', quality1 ! ! QUALITY2 ! call tetrahedron_quality2 ( node_xyz, quality2 ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' QUALITY2 = ', quality2 ! ! QUALITY3 ! call tetrahedron_quality3 ( node_xyz, quality3 ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' QUALITY3 = ', quality3 ! ! QUALITY4 ! call tetrahedron_quality4 ( node_xyz, quality4 ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' QUALITY4 = ', quality4 ! ! SOLID ANGLES ! call tetrahedron_solid_angles ( node_xyz, solid_angles ) call r8vec_print ( 4, solid_angles, ' SOLID_ANGLES (steradians)' ) ! ! VOLUME ! call tetrahedron_volume ( node_xyz, volume ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' VOLUME = ', volume ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TETRAHEDRON_PROPERTIES:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( c ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character C, the character to capitalize. ! implicit none character c integer ( kind = 4 ) itemp itemp = ichar ( c ) if ( 97 <= itemp .and. itemp <= 122 ) then c = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer ( kind = 4 ) DIGIT, the corresponding value. ! If C was 'illegal', then DIGIT is -1. ! implicit none character c integer ( kind = 4 ) digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_file_name, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the file. ! ! Output, integer ( kind = 4 ) COLUMN_NUM, the number of columns in the file. ! implicit none integer ( kind = 4 ) column_num logical got_one character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & form = 'formatted', access = 'sequential', iostat = input_status ) if ( input_status /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' & // trim ( input_file_name ) // '" on unit ', input_unit return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_file_name, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the input file. ! ! Output, integer ( kind = 4 ) ROW_NUM, the number of rows found. ! implicit none integer ( kind = 4 ) bad_num integer ( kind = 4 ) comment_num integer ( kind = 4 ) ierror character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit character ( len = 255 ) line integer ( kind = 4 ) record_num integer ( kind = 4 ) row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_file_name ) // '" on unit ', input_unit stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer ( kind = 4 ) IUNIT, the free unit number. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) ios integer ( kind = 4 ) iunit logical ( kind = 4 ) lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end function r8_acos ( c ) !*****************************************************************************80 ! !! R8_ACOS computes the arc cosine function, with argument truncation. ! ! Discussion: ! ! If you call your system ACOS routine with an input argument that is ! even slightly outside the range [-1.0, 1.0 ], you may get an unpleasant ! surprise (I did). ! ! This routine simply truncates arguments outside the range. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 October 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) C, the argument. ! ! Output, real ( kind = 8 ) R8_ACOS, an angle whose cosine is C. ! implicit none real ( kind = 8 ) c real ( kind = 8 ) c2 real ( kind = 8 ) r8_acos c2 = c c2 = max ( c2, -1.0D+00 ) c2 = min ( c2, +1.0D+00 ) r8_acos = acos ( c2 ) return end subroutine r8_swap ( x, y ) !*****************************************************************************80 ! !! R8_SWAP swaps two R8's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 22 December 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X, Y. On output, the values of X and ! Y have been interchanged. ! implicit none real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z z = x x = y y = z return end function r8mat_det_4d ( a ) !*****************************************************************************80 ! !! R8MAT_DET_4D computes the determinant of a 4 by 4 matrix. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) A(4,4), the matrix whose determinant is desired. ! ! Output, real ( kind = 8 ) R8MAT_DET_4D, the determinant of the matrix. ! implicit none real ( kind = 8 ) a(4,4) real ( kind = 8 ) r8mat_det_4d r8mat_det_4d = & a(1,1) * ( & a(2,2) * ( a(3,3) * a(4,4) - a(3,4) * a(4,3) ) & - a(2,3) * ( a(3,2) * a(4,4) - a(3,4) * a(4,2) ) & + a(2,4) * ( a(3,2) * a(4,3) - a(3,3) * a(4,2) ) ) & - a(1,2) * ( & a(2,1) * ( a(3,3) * a(4,4) - a(3,4) * a(4,3) ) & - a(2,3) * ( a(3,1) * a(4,4) - a(3,4) * a(4,1) ) & + a(2,4) * ( a(3,1) * a(4,3) - a(3,3) * a(4,1) ) ) & + a(1,3) * ( & a(2,1) * ( a(3,2) * a(4,4) - a(3,4) * a(4,2) ) & - a(2,2) * ( a(3,1) * a(4,4) - a(3,4) * a(4,1) ) & + a(2,4) * ( a(3,1) * a(4,2) - a(3,2) * a(4,1) ) ) & - a(1,4) * ( & a(2,1) * ( a(3,2) * a(4,3) - a(3,3) * a(4,2) ) & - a(2,2) * ( a(3,1) * a(4,3) - a(3,3) * a(4,1) ) & + a(2,3) * ( a(3,1) * a(4,2) - a(3,2) * a(4,1) ) ) return end subroutine r8mat_data_read ( input_file_name, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the input file. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Output, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) ierror character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit integer ( kind = 4 ) j character ( len = 255 ) line real ( kind = 8 ) table(m,n) real ( kind = 8 ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_file_name ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_file_name, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the input file. ! ! Output, integer ( kind = 4 ) M, spatial dimension. ! ! Output, integer ( kind = 4 ) N, the number of points. ! implicit none character ( len = * ) input_file_name integer ( kind = 4 ) m integer ( kind = 4 ) n call file_column_count ( input_file_name, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_file_name ) // '".' stop end if call file_row_count ( input_file_name, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_file_name ) // '".' stop end if return end subroutine r8mat_solve ( n, rhs_num, a, info ) !*****************************************************************************80 ! !! R8MAT_SOLVE uses Gauss-Jordan elimination to solve an N by N linear system. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 29 August 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrix. ! ! Input, integer ( kind = 4 ) RHS_NUM, the number of right hand sides. ! RHS_NUM must be at least 0. ! ! Input/output, real ( kind = 8 ) A(N,N+rhs_num), contains in rows and ! columns 1 to N the coefficient matrix, and in columns N+1 through ! N+rhs_num, the right hand sides. On output, the coefficient matrix ! area has been destroyed, while the right hand sides have ! been overwritten with the corresponding solutions. ! ! Output, integer ( kind = 4 ) INFO, singularity flag. ! 0, the matrix was not singular, the solutions were computed; ! J, factorization failed on step J, and the solutions could not ! be computed. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) rhs_num real ( kind = 8 ) a(n,n+rhs_num) real ( kind = 8 ) apivot real ( kind = 8 ) factor integer ( kind = 4 ) i integer ( kind = 4 ) info integer ( kind = 4 ) ipivot integer ( kind = 4 ) j info = 0 do j = 1, n ! ! Choose a pivot row. ! ipivot = j apivot = a(j,j) do i = j+1, n if ( abs ( apivot ) < abs ( a(i,j) ) ) then apivot = a(i,j) ipivot = i end if end do if ( apivot == 0.0D+00 ) then info = j return end if ! ! Interchange. ! do i = 1, n + rhs_num call r8_swap ( a(ipivot,i), a(j,i) ) end do ! ! A(J,J) becomes 1. ! a(j,j) = 1.0D+00 a(j,j+1:n+rhs_num) = a(j,j+1:n+rhs_num) / apivot ! ! A(I,J) becomes 0. ! do i = 1, n if ( i /= j ) then factor = a(i,j) a(i,j) = 0.0D+00 a(i,j+1:n+rhs_num) = a(i,j+1:n+rhs_num) - factor * a(j,j+1:n+rhs_num) end if end do end do return end subroutine r8mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2 integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)' ) i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8vec_angle_3d ( u, v, angle ) !*****************************************************************************80 ! !! R8VEC_ANGLE_3D computes the angle between two vectors in 3D. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 July 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) U(3), V(3), the vectors. ! ! Output, real ( kind = 8 ) ANGLE, the angle between the two vectors. ! implicit none real ( kind = 8 ) angle real ( kind = 8 ) angle_cos real ( kind = 8 ) r8_acos real ( kind = 8 ) u(3) real ( kind = 8 ) u_norm real ( kind = 8 ) uv_dot real ( kind = 8 ) v(3) real ( kind = 8 ) v_norm uv_dot = dot_product ( u(1:3), v(1:3) ) u_norm = sqrt ( dot_product ( u(1:3), u(1:3) ) ) v_norm = sqrt ( dot_product ( v(1:3), v(1:3) ) ) angle_cos = uv_dot / u_norm / v_norm angle = r8_acos ( angle_cos ) return end subroutine r8vec_cross_3d ( v1, v2, v3 ) !*****************************************************************************80 ! !! R8VEC_CROSS_3D computes the cross product of two vectors in 3D. ! ! Discussion: ! ! The cross product in 3D can be regarded as the determinant of the ! symbolic matrix: ! ! | i j k | ! det | x1 y1 z1 | ! | x2 y2 z2 | ! ! = ( y1 * z2 - z1 * y2 ) * i ! + ( z1 * x2 - x1 * z2 ) * j ! + ( x1 * y2 - y1 * x2 ) * k ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) V1(3), V2(3), the two vectors. ! ! Output, real ( kind = 8 ) V3(3), the cross product vector. ! implicit none real ( kind = 8 ) v1(3) real ( kind = 8 ) v2(3) real ( kind = 8 ) v3(3) v3(1) = v1(2) * v2(3) - v1(3) * v2(2) v3(2) = v1(3) * v2(1) - v1(1) * v2(3) v3(3) = v1(1) * v2(2) - v1(2) * v2(1) return end function r8vec_length ( dim_num, x ) !*****************************************************************************80 ! !! R8VEC_LENGTH returns the Euclidean length of a vector. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 08 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) DIM_NUM, the spatial dimension. ! ! Input, real ( kind = 8 ) X(DIM_NUM), the vector. ! ! Output, real ( kind = 8 ) R8VEC_LENGTH, the Euclidean length of the vector. ! implicit none integer ( kind = 4 ) dim_num real ( kind = 8 ) r8vec_length real ( kind = 8 ) x(dim_num) r8vec_length = sqrt ( sum ( ( x(1:dim_num) )**2 ) ) return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 22 August 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, real ( kind = 8 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n) integer ( kind = 4 ) i character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,g16.8)' ) i, a(i) end do return end subroutine r8vec_transpose_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_TRANSPOSE_PRINT prints an R8VEC "transposed". ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! Example: ! ! A = (/ 1.0, 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8, 10.9, 11.0 /) ! TITLE = 'My vector: ' ! ! My vector: ! 1.0 2.1 3.2 4.3 5.4 ! 6.5 7.6 8.7 9.8 10.9 ! 11.0 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 12 November 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, real ( kind = 8 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n) integer ( kind = 4 ) i integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo character ( len = * ) title integer ( kind = 4 ) title_length title_length = len_trim ( title ) do ilo = 1, n, 5 if ( ilo == 1 ) then write ( *, '(a)', advance = 'NO' ) trim ( title ) else write ( *, '(a)', advance = 'NO' ) ( ' ', i = 1, title_length ) end if write ( *, '(2x)', advance = 'NO' ) ihi = min ( ilo + 5 - 1, n ) write ( *, '(5g14.6)' ) a(ilo:ihi) end do return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = 8 ) DVAL, the value read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer ( kind = 4 ) LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none character c logical ch_eqi real ( kind = 8 ) dval integer ( kind = 4 ) ierror integer ( kind = 4 ) ihave integer ( kind = 4 ) isgn integer ( kind = 4 ) iterm integer ( kind = 4 ) jbot integer ( kind = 4 ) jsgn integer ( kind = 4 ) jtop integer ( kind = 4 ) length integer ( kind = 4 ) nchar integer ( kind = 4 ) ndig real ( kind = 8 ) rbot real ( kind = 8 ) rexp real ( kind = 8 ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length+1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = 8 ) & / real ( jbot, kind = 8 ) ) end if end if dval = real ( isgn, kind = 8 ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer ( kind = 4 ) N, the number of values expected. ! ! Output, real ( kind = 8 ) RVEC(N), the values read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) ilo integer ( kind = 4 ) lchar real ( kind = 8 ) rvec(n) character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer ( kind = 4 ) NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none logical blank integer ( kind = 4 ) i integer ( kind = 4 ) lens integer ( kind = 4 ) nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine tetrahedron_centroid ( tetra, centroid ) !*****************************************************************************80 ! !! TETRAHEDRON_CENTROID computes the centroid of a tetrahedron. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4) the tetrahedron vertices. ! ! Output, real ( kind = 8 ) CENTROID(3), the coordinates of the centroid. ! implicit none real ( kind = 8 ) centroid(3) integer ( kind = 4 ) i real ( kind = 8 ) tetra(3,4) do i = 1, 3 centroid(i) = sum ( tetra(i,1:4) ) / 4.0D+00 end do return end subroutine tetrahedron_circumsphere ( tetra, r, pc ) !*****************************************************************************80 ! !! TETRAHEDRON_CIRCUMSPHERE computes the circumsphere of a tetrahedron. ! ! Discussion: ! ! The circumsphere, or circumscribed sphere, of a tetrahedron is the ! sphere that passes through the four vertices. The circumsphere is ! not necessarily the smallest sphere that contains the tetrahedron. ! ! Surprisingly, the diameter of the sphere can be found by solving ! a 3 by 3 linear system. This is because the vectors P2 - P1, ! P3 - P1 and P4 - P1 are secants of the sphere, and each forms a ! right triangle with the diameter through P1. Hence, the dot product of ! P2 - P1 with that diameter is equal to the square of the length ! of P2 - P1, and similarly for P3 - P1 and P4 - P1. This determines ! the diameter vector originating at P1, and hence the radius and ! center. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 10 August 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Adrian Bowyer, John Woodwark, ! A Programmer's Geometry, ! Butterworths, 1983. ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4) the tetrahedron vertices. ! ! Output, real ( kind = 8 ) R, PC(3), the center of the ! circumscribed sphere, and its radius. If the linear system is ! singular, then R = -1, PC(1:3) = 0. ! implicit none real ( kind = 8 ) a(3,4) integer ( kind = 4 ) i integer ( kind = 4 ) info integer ( kind = 4 ) j real ( kind = 8 ) pc(3) real ( kind = 8 ) r real ( kind = 8 ) tetra(3,4) ! ! Set up the linear system. ! a(1:3,1:3) = transpose ( tetra(1:3,2:4) ) do j = 1, 3 a(1:3,j) = a(1:3,j) - tetra(j,1) end do do i = 1, 3 a(i,4) = sum ( a(i,1:3)**2 ) end do ! ! Solve the linear system. ! call r8mat_solve ( 3, 1, a, info ) ! ! If the system was singular, return a consolation prize. ! if ( info /= 0 ) then r = -1.0D+00 pc(1:3) = 0.0D+00 return end if ! ! Compute the radius and center. ! r = 0.5D+00 * sqrt ( sum ( a(1:3,4)**2 ) ) pc(1:3) = tetra(1:3,1) + 0.5D+00 * a(1:3,4) return end subroutine tetrahedron_dihedral_angles ( tetra, angle ) !*****************************************************************************80 ! !! TETRAHEDRON_DIHEDRAL_ANGLES computes dihedral angles of a tetrahedron. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 July 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) ANGLE(6), the dihedral angles along the ! axes AB, AC, AD, BC, BD and CD, respectively. ! implicit none real ( kind = 8 ) ab(3) real ( kind = 8 ) abc_normal(3) real ( kind = 8 ) abd_normal(3) real ( kind = 8 ) ac(3) real ( kind = 8 ) acd_normal(3) real ( kind = 8 ) ad(3) real ( kind = 8 ) angle(6) real ( kind = 8 ) bc(3) real ( kind = 8 ) bcd_normal(3) real ( kind = 8 ) bd(3) real ( kind = 8 ) cd(3) real ( kind = 8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = 8 ) tetra(3,4) call tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ) call r8vec_cross_3d ( ac, ab, abc_normal ) call r8vec_cross_3d ( ab, ad, abd_normal ) call r8vec_cross_3d ( ad, ac, acd_normal ) call r8vec_cross_3d ( bc, bd, bcd_normal ) call r8vec_angle_3d ( abc_normal, abd_normal, angle(1) ) call r8vec_angle_3d ( abc_normal, acd_normal, angle(2) ) call r8vec_angle_3d ( abd_normal, acd_normal, angle(3) ) call r8vec_angle_3d ( abc_normal, bcd_normal, angle(4) ) call r8vec_angle_3d ( abd_normal, bcd_normal, angle(5) ) call r8vec_angle_3d ( acd_normal, bcd_normal, angle(6) ) angle(1:6) = r8_pi - angle(1:6) return end subroutine tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ) !*****************************************************************************80 ! !! TETRAHEDRON_EDGES computes the edges of a tetrahedron. ! ! Discussion: ! ! The vertices are A, B, C, D. The edge from A to B is denoted by AB. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 May 2014 ! ! Author: ! ! John Burkardt. ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) AB(3), AC(3), AD(3), BC(3), BD(3), CD(3), ! vectors that represent the edges of the tetrahedron. ! implicit none real ( kind = 8 ) ab(3) real ( kind = 8 ) ac(3) real ( kind = 8 ) ad(3) real ( kind = 8 ) bc(3) real ( kind = 8 ) bd(3) real ( kind = 8 ) cd(3) real ( kind = 8 ) tetra(3,4) ab(1:3) = tetra(1:3,2) - tetra(1:3,1) ac(1:3) = tetra(1:3,3) - tetra(1:3,1) ad(1:3) = tetra(1:3,4) - tetra(1:3,1) bc(1:3) = tetra(1:3,3) - tetra(1:3,2) bd(1:3) = tetra(1:3,4) - tetra(1:3,2) cd(1:3) = tetra(1:3,4) - tetra(1:3,3) return end subroutine tetrahedron_edge_length ( tetra, edge_length ) !*****************************************************************************80 ! !! TETRAHEDRON_EDGE_LENGTH returns edge lengths of a tetrahedron. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the tetrahedron vertices. ! ! Output, real ( kind = 8 ) EDGE_LENGTH(6), the length of the edges. ! implicit none real ( kind = 8 ) r8vec_length real ( kind = 8 ) edge_length(6) integer ( kind = 4 ) j1 integer ( kind = 4 ) j2 integer ( kind = 4 ) k real ( kind = 8 ) tetra(3,4) k = 0 do j1 = 1, 3 do j2 = j1 + 1, 4 k = k + 1 edge_length(k) = r8vec_length ( 3, tetra(1:3,j2) - tetra(1:3,j1) ) end do end do return end subroutine tetrahedron_face_angles ( tetra, angles ) !*****************************************************************************80 ! !! TETRAHEDRON_FACE_ANGLES returns the 12 face angles of a tetrahedron. ! ! Discussion: ! ! The tetrahedron has 4 triangular faces. This routine computes the ! 3 planar angles associated with each face. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 July 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4) the tetrahedron vertices. ! ! Output, real ( kind = 8 ) ANGLES(3,4), the face angles. ! implicit none real ( kind = 8 ) angles(3,4) real ( kind = 8 ) tri(3,3) real ( kind = 8 ) tetra(3,4) ! ! Face 123 ! tri(1:3,1:3) = tetra(1:3,1:3) call triangle_angles_3d ( tri, angles(1:3,1) ) ! ! Face 124 ! tri(1:3,1:2) = tetra(1:3,1:2) tri(1:3,3) = tetra(1:3,4) call triangle_angles_3d ( tri, angles(1:3,2) ) ! ! Face 134 ! tri(1:3,1) = tetra(1:3,1) tri(1:3,2:3) = tetra(1:3,3:4) call triangle_angles_3d ( tri, angles(1:3,3) ) ! ! Face 234 ! tri(1:3,1:3) = tetra(1:3,2:4) call triangle_angles_3d ( tri, angles(1:3,4) ) return end subroutine tetrahedron_face_areas ( tetra, areas ) !*****************************************************************************80 ! !! TETRAHEDRON_FACE_AREAS returns the 4 face areas of a tetrahedron. ! ! Discussion: ! ! The tetrahedron has 4 triangular faces. This routine computes the ! area of each face. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 July 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4) the tetrahedron vertices. ! ! Output, real ( kind = 8 ) AREAS(4), the face areas. ! implicit none real ( kind = 8 ) areas(4) real ( kind = 8 ) tri(3,3) real ( kind = 8 ) tetra(3,4) ! ! Face 123 ! tri(1:3,1:3) = tetra(1:3,1:3) call triangle_area_3d ( tri, areas(1) ) ! ! Face 124 ! tri(1:3,1:2) = tetra(1:3,1:2) tri(1:3,3) = tetra(1:3,4) call triangle_area_3d ( tri, areas(2) ) ! ! Face 134 ! tri(1:3,1) = tetra(1:3,1) tri(1:3,2:3) = tetra(1:3,3:4) call triangle_area_3d ( tri, areas(3) ) ! ! Face 234 ! tri(1:3,1:3) = tetra(1:3,2:4) call triangle_area_3d ( tri, areas(4) ) return end subroutine tetrahedron_insphere ( tetra, r, pc ) !*****************************************************************************80 ! !! TETRAHEDRON_INSPHERE finds the insphere of a tetrahedron. ! ! Discussion: ! ! The insphere of a tetrahedron is the inscribed sphere, which touches ! each face of the tetrahedron at a single point. ! ! The points of contact are the centroids of the triangular faces ! of the tetrahedron. Therefore, the point of contact for a face ! can be computed as the average of the vertices of that face. ! ! The sphere can then be determined as the unique sphere through ! the four given centroids. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 08 August 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Philip Schneider, David Eberly, ! Geometric Tools for Computer Graphics, ! Elsevier, 2002, ! ISBN: 1558605940, ! LC: T385.G6974. ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) R, PC(3), the radius and the center ! of the sphere. ! implicit none real ( kind = 8 ) b(4,4) real ( kind = 8 ) r8mat_det_4d real ( kind = 8 ) r8vec_length real ( kind = 8 ) gamma real ( kind = 8 ) l123 real ( kind = 8 ) l124 real ( kind = 8 ) l134 real ( kind = 8 ) l234 real ( kind = 8 ) n123(1:3) real ( kind = 8 ) n124(1:3) real ( kind = 8 ) n134(1:3) real ( kind = 8 ) n234(1:3) real ( kind = 8 ) pc(1:3) real ( kind = 8 ) r real ( kind = 8 ) tetra(1:3,4) real ( kind = 8 ) v21(1:3) real ( kind = 8 ) v31(1:3) real ( kind = 8 ) v41(1:3) real ( kind = 8 ) v32(1:3) real ( kind = 8 ) v42(1:3) real ( kind = 8 ) v43(1:3) call tetrahedron_edges ( tetra, v21, v31, v41, v32, v42, v43 ) call r8vec_cross_3d ( v21, v31, n123 ) call r8vec_cross_3d ( v41, v21, n124 ) call r8vec_cross_3d ( v31, v41, n134 ) call r8vec_cross_3d ( v42, v32, n234 ) l123 = r8vec_length ( 3, n123 ) l124 = r8vec_length ( 3, n124 ) l134 = r8vec_length ( 3, n134 ) l234 = r8vec_length ( 3, n234 ) pc(1:3) = ( l234 * tetra(1:3,1) & + l134 * tetra(1:3,2) & + l124 * tetra(1:3,3) & + l123 * tetra(1:3,4) ) & / ( l234 + l134 + l124 + l123 ) b(1:3,1:4) = tetra(1:3,1:4) b(4,1:4) = 1.0D+00 gamma = abs ( r8mat_det_4d ( b ) ) r = gamma / ( l234 + l134 + l124 + l123 ) return end subroutine tetrahedron_quality1 ( tetra, quality ) !*****************************************************************************80 ! !! TETRAHEDRON_QUALITY1: "quality" of a tetrahedron. ! ! Discussion: ! ! The quality of a tetrahedron is 3 times the ratio of the radius of ! the inscribed sphere divided by that of the circumscribed sphere. ! ! An equilateral tetrahredron achieves the maximum possible quality of 1. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the tetrahedron vertices. ! ! Output, real ( kind = 8 ) QUALITY, the quality of the tetrahedron. ! implicit none real ( kind = 8 ) pc(3) real ( kind = 8 ) quality real ( kind = 8 ) r_in real ( kind = 8 ) r_out real ( kind = 8 ) tetra(3,4) call tetrahedron_circumsphere ( tetra, r_out, pc ) call tetrahedron_insphere ( tetra, r_in, pc ) quality = 3.0D+00 * r_in / r_out return end subroutine tetrahedron_quality2 ( tetra, quality2 ) !*****************************************************************************80 ! !! TETRAHEDRON_QUALITY2: "quality" of a tetrahedron. ! ! Discussion: ! ! The quality measure #2 of a tetrahedron is: ! ! QUALITY2 = 2 * sqrt ( 6 ) * RIN / LMAX ! ! where ! ! RIN = radius of the inscribed sphere; ! LMAX = length of longest side of the tetrahedron. ! ! An equilateral tetrahredron achieves the maximum possible quality of 1. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 August 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Qiang Du, Desheng Wang, ! The Optimal Centroidal Voronoi Tesselations and the Gersho's ! Conjecture in the Three-Dimensional Space, ! Computers and Mathematics with Applications, ! Volume 49, 2005, pages 1355-1373. ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the tetrahedron vertices. ! ! Output, real ( kind = 8 ) QUALITY2, the quality of the tetrahedron. ! implicit none real ( kind = 8 ) edge_length(6) real ( kind = 8 ) l_max real ( kind = 8 ) pc(3) real ( kind = 8 ) quality2 real ( kind = 8 ) r_in real ( kind = 8 ) tetra(3,4) call tetrahedron_edge_length ( tetra, edge_length ) l_max = maxval ( edge_length(1:6) ) call tetrahedron_insphere ( tetra, r_in, pc ) quality2 = 2.0D+00 * sqrt ( 6.0D+00 ) * r_in / l_max return end subroutine tetrahedron_quality3 ( tetra, quality3 ) !*****************************************************************************80 ! !! TETRAHEDRON_QUALITY3 computes the mean ratio of a tetrahedron. ! ! Discussion: ! ! This routine computes QUALITY3, the eigenvalue or mean ratio of ! a tetrahedron. ! ! QUALITY3 = 12 * ( 3 * volume )^(2/3) / (sum of squares of edge lengths). ! ! This value may be used as a shape quality measure for the tetrahedron. ! ! For an equilateral tetrahedron, the value of this quality measure ! will be 1. For any other tetrahedron, the value will be between ! 0 and 1. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 17 August 2005 ! ! Author: ! ! Original FORTRAN77 version by Barry Joe. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Barry Joe, ! GEOMPACK - a software package for the generation of meshes ! using geometric algorithms, ! Advances in Engineering Software, ! Volume 13, pages 325-331, 1991. ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) QUALITY3, the mean ratio of the tetrahedron. ! implicit none real ( kind = 8 ) ab(3) real ( kind = 8 ) ac(3) real ( kind = 8 ) ad(3) real ( kind = 8 ) bc(3) real ( kind = 8 ) bd(3) real ( kind = 8 ) cd(3) real ( kind = 8 ) denom real ( kind = 8 ) lab real ( kind = 8 ) lac real ( kind = 8 ) lad real ( kind = 8 ) lbc real ( kind = 8 ) lbd real ( kind = 8 ) lcd real ( kind = 8 ) quality3 real ( kind = 8 ) tetra(3,4) real ( kind = 8 ) volume ! ! Compute the vectors representing the sides of the tetrahedron. ! call tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ) ! ! Compute the squares of the lengths of the sides. ! lab = sum ( ab(1:3)**2 ) lac = sum ( ac(1:3)**2 ) lad = sum ( ad(1:3)**2 ) lbc = sum ( bc(1:3)**2 ) lbd = sum ( bd(1:3)**2 ) lcd = sum ( cd(1:3)**2 ) ! ! Compute the volume. ! volume = abs ( & ab(1) * ( ac(2) * ad(3) - ac(3) * ad(2) ) & + ab(2) * ( ac(3) * ad(1) - ac(1) * ad(3) ) & + ab(3) * ( ac(1) * ad(2) - ac(2) * ad(1) ) ) / 6.0D+00 denom = lab + lac + lad + lbc + lbd + lcd if ( denom == 0.0D+00 ) then quality3 = 0.0D+00 else quality3 = 12.0D+00 * ( 3.0D+00 * volume )**( 2.0D+00 / 3.0D+00 ) / denom end if return end subroutine tetrahedron_quality4 ( tetra, quality4 ) !*****************************************************************************80 ! !! TETRAHEDRON_QUALITY4 computes the minimum solid angle of a tetrahedron. ! ! Discussion: ! ! This routine computes a quality measure for a tetrahedron, based ! on the sine of half the minimum of the four solid angles. ! ! The quality measure for an equilateral tetrahedron should be 1, ! since the solid angles of such a tetrahedron are each equal to pi. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 17 August 2005 ! ! Author: ! ! Original FORTRAN77 version by Barry Joe. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Barry Joe, ! GEOMPACK - a software package for the generation of meshes ! using geometric algorithms, ! Advances in Engineering Software, ! Volume 13, pages 325-331, 1991. ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) QUALITY4, the value of the quality measure. ! implicit none real ( kind = 8 ) ab(3) real ( kind = 8 ) ac(3) real ( kind = 8 ) ad(3) real ( kind = 8 ) bc(3) real ( kind = 8 ) bd(3) real ( kind = 8 ) cd(3) real ( kind = 8 ) denom real ( kind = 8 ) l1 real ( kind = 8 ) l2 real ( kind = 8 ) l3 real ( kind = 8 ) lab real ( kind = 8 ) lac real ( kind = 8 ) lad real ( kind = 8 ) lbc real ( kind = 8 ) lbd real ( kind = 8 ) lcd real ( kind = 8 ) quality4 real ( kind = 8 ) tetra(3,4) real ( kind = 8 ) volume ! ! Compute the vectors that represent the sides. ! call tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ) ! ! Compute the lengths of the sides. ! lab = sqrt ( sum ( ab(1:3)**2 ) ) lac = sqrt ( sum ( ac(1:3)**2 ) ) lad = sqrt ( sum ( ad(1:3)**2 ) ) lbc = sqrt ( sum ( bc(1:3)**2 ) ) lbd = sqrt ( sum ( bd(1:3)**2 ) ) lcd = sqrt ( sum ( cd(1:3)**2 ) ) ! ! Compute the volume ! volume = abs ( & ab(1) * ( ac(2) * ad(3) - ac(3) * ad(2) ) & + ab(2) * ( ac(3) * ad(1) - ac(1) * ad(3) ) & + ab(3) * ( ac(1) * ad(2) - ac(2) * ad(1) ) ) / 6.0D+00 quality4 = 1.0D+00 l1 = lab + lac l2 = lab + lad l3 = lac + lad denom = ( l1 + lbc ) * ( l1 - lbc ) & * ( l2 + lbd ) * ( l2 - lbd ) & * ( l3 + lcd ) * ( l3 - lcd ) if ( denom <= 0.0D+00 ) then quality4 = 0.0D+00 else quality4 = min ( quality4, 12.0D+00 * volume / sqrt ( denom ) ) end if l1 = lab + lbc l2 = lab + lbd l3 = lbc + lbd denom = ( l1 + lac ) * ( l1 - lac ) & * ( l2 + lad ) * ( l2 - lad ) & * ( l3 + lcd ) * ( l3 - lcd ) if ( denom <= 0.0D+00 ) then quality4 = 0.0D+00 else quality4 = min ( quality4, 12.0D+00 * volume / sqrt ( denom ) ) end if l1 = lac + lbc l2 = lac + lcd l3 = lbc + lcd denom = ( l1 + lab ) * ( l1 - lab ) & * ( l2 + lad ) * ( l2 - lad ) & * ( l3 + lbd ) * ( l3 - lbd ) if ( denom <= 0.0D+00 ) then quality4 = 0.0D+00 else quality4 = min ( quality4, 12.0D+00 * volume / sqrt ( denom ) ) end if l1 = lad + lbd l2 = lad + lcd l3 = lbd + lcd denom = ( l1 + lab ) * ( l1 - lab ) & * ( l2 + lac ) * ( l2 - lac ) & * ( l3 + lbc ) * ( l3 - lbc ) if ( denom <= 0.0D+00 ) then quality4 = 0.0D+00 else quality4 = min ( quality4, 12.0D+00 * volume / sqrt ( denom ) ) end if quality4 = quality4 * 1.5D+00 * sqrt ( 6.0D+00 ) return end subroutine tetrahedron_solid_angles ( tetra, angle ) !*****************************************************************************80 ! !! TETRAHEDRON_SOLID_ANGLES computes solid angles of a tetrahedron. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 July 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) ANGLE(4), the solid angles. ! implicit none real ( kind = 8 ) angle(4) real ( kind = 8 ) dihedral_angles(6) real ( kind = 8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = 8 ) tetra(3,4) call tetrahedron_dihedral_angles ( tetra, dihedral_angles ) angle(1) = dihedral_angles(1) & + dihedral_angles(2) & + dihedral_angles(3) - r8_pi angle(2) = dihedral_angles(1) & + dihedral_angles(4) & + dihedral_angles(5) - r8_pi angle(3) = dihedral_angles(2) & + dihedral_angles(4) & + dihedral_angles(6) - r8_pi angle(4) = dihedral_angles(3) & + dihedral_angles(5) & + dihedral_angles(6) - r8_pi return end subroutine tetrahedron_volume ( tetra, volume ) !*****************************************************************************80 ! !! TETRAHEDRON_VOLUME computes the volume of a tetrahedron. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron. ! ! Output, real ( kind = 8 ) VOLUME, the volume of the tetrahedron. ! implicit none real ( kind = 8 ) a(4,4) real ( kind = 8 ) r8mat_det_4d real ( kind = 8 ) tetra(3,4) real ( kind = 8 ) volume a(1:3,1:4) = tetra(1:3,1:4) a(4,1:4) = 1.0D+00 volume = abs ( r8mat_det_4d ( a ) ) / 6.0D+00 return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end subroutine triangle_angles_3d ( t, angle ) !*****************************************************************************80 ! !! TRIANGLE_ANGLES_3D computes the angles of a triangle in 3D. ! ! Discussion: ! ! The law of cosines is used: ! ! C * C = A * A + B * B - 2 * A * B * COS ( GAMMA ) ! ! where GAMMA is the angle opposite side C. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 May 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = 8 ) T(3,3), the triangle vertices. ! ! Output, real ( kind = 8 ) ANGLE(3), the angles opposite ! sides P1-P2, P2-P3 and P3-P1, in radians. ! implicit none real ( kind = 8 ) a real ( kind = 8 ) angle(3) real ( kind = 8 ) b real ( kind = 8 ) c real ( kind = 8 ) r8_acos real ( kind = 8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = 8 ) t(3,3) ! ! Compute the length of each side. ! a = sqrt ( sum ( ( t(1:3,1) - t(1:3,2) )**2 ) ) b = sqrt ( sum ( ( t(1:3,2) - t(1:3,3) )**2 ) ) c = sqrt ( sum ( ( t(1:3,3) - t(1:3,1) )**2 ) ) ! ! Take care of a ridiculous special case. ! if ( a == 0.0D+00 .and. b == 0.0D+00 .and. c == 0.0D+00 ) then angle(1:3) = 2.0D+00 * r8_pi / 3.0D+00 return end if if ( c == 0.0D+00 .or. a == 0.0D+00 ) then angle(1) = r8_pi else angle(1) = r8_acos ( ( c * c + a * a - b * b ) / ( 2.0D+00 * c * a ) ) end if if ( a == 0.0D+00 .or. b == 0.0D+00 ) then angle(2) = r8_pi else angle(2) = r8_acos ( ( a * a + b * b - c * c ) / ( 2.0D+00 * a * b ) ) end if if ( b == 0.0D+00 .or. c == 0.0D+00 ) then angle(3) = r8_pi else angle(3) = r8_acos ( ( b * b + c * c - a * a ) / ( 2.0D+00 * b * c ) ) end if return end subroutine triangle_area_3d ( t, area ) !*****************************************************************************80 ! !! TRIANGLE_AREA_3D computes the area of a triangle in 3D. ! ! Discussion: ! ! This routine uses the fact that the norm of the cross product ! of two vectors is the area of the parallelogram they form. ! ! Therefore, the area of the triangle is half of that value. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 27 December 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Adrian Bowyer, John Woodwark, ! A Programmer's Geometry, ! Butterworths, 1983. ! ! Parameters: ! ! Input, real ( kind = 8 ) T(3,3), the triangle vertices. ! ! Output, real ( kind = 8 ) AREA, the area of the triangle. ! implicit none real ( kind = 8 ) area real ( kind = 8 ) cross(3) real ( kind = 8 ) t(3,3) ! ! Compute the cross product vector. ! cross(1) = ( t(2,2) - t(2,1) ) * ( t(3,3) - t(3,1) ) & - ( t(3,2) - t(3,1) ) * ( t(2,3) - t(2,1) ) cross(2) = ( t(3,2) - t(3,1) ) * ( t(1,3) - t(1,1) ) & - ( t(1,2) - t(1,1) ) * ( t(3,3) - t(3,1) ) cross(3) = ( t(1,2) - t(1,1) ) * ( t(2,3) - t(2,1) ) & - ( t(2,2) - t(2,1) ) * ( t(1,3) - t(1,1) ) area = 0.5D+00 * sqrt ( sum ( cross(1:3)**2 ) ) return end