program main !*****************************************************************************80 ! !! MAIN is the main program for TET_MESH_REFINE. ! ! Discussion: ! ! TET_MESH_REFINE refines a tetrahedral mesh of order 4 (linear). ! ! Usage: ! ! tet_mesh_refine prefix ! ! where ! ! * prefix_nodes.txt contains nodal coordinates; ! * prefix_elements.txt contains the element definitions; ! * prefix_ref_nodes.txt will contain refined nodal coordinates; ! * prefix_ref_elements.txt will contain refined element definitions. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 September 2009 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ) arg_num integer ( kind = 4 ) dim_num integer ( kind = 4 ), allocatable, dimension ( :, : ) :: edge_data integer ( kind = 4 ) iarg integer ( kind = 4 ) iargc character ( len = 255 ) :: input_node_filename = ' ' character ( len = 255 ) :: input_element_filename = ' ' integer ( kind = 4 ) node_num1 integer ( kind = 4 ) node_num2 real ( kind = 8 ), allocatable, dimension ( :, : ) :: node_xyz1 real ( kind = 8 ), allocatable, dimension ( :, : ) :: node_xyz2 character ( len = 255 ) :: output_node_filename = ' ' character ( len = 255 ) :: output_element_filename = ' ' character ( len = 255 ) prefix integer ( kind = 4 ), allocatable, dimension ( :, : ) :: tetra_node1 integer ( kind = 4 ), allocatable, dimension ( :, : ) :: tetra_node2 integer ( kind = 4 ) tetra_num1 integer ( kind = 4 ) tetra_num2 integer ( kind = 4 ) tetra_order call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TET_MESH_REFINE' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' READ a tet mesh, REFINE it, and WRITE the new data.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' READ:' write ( *, '(a)' ) ' a node dataset of NODE_NUM1 points in 3 dimensions.' write ( *, '(a)' ) ' a tet mesh of TETRA_NUM1 tets of order TET_ORDER.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' REFINE:' write ( *, '(a)' ) ' compute a new set of nodes and tets, which is an' write ( *, '(a)' ) ' eightfold refinement of the input mesh.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' WRITE:' write ( *, '(a)' ) ' a node dataset of NODE_NUM2 points in 3 dimensions.' write ( *, '(a)' ) ' a tet mesh of 8*TETRA_NUM1 tets of order TET_ORDER.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' At the moment, this program only works for a linear' write ( *, '(a)' ) ' mesh (TET_ORDER=4).' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! Argument 1 is the common file prefix. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, prefix ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TET_MESH_REFINE:' write ( *, '(a)' ) ' Please enter the filename prefix:' read ( *, '(a)' ) prefix end if ! ! Create the filenames. ! input_node_filename = trim ( prefix ) // '_nodes.txt' input_element_filename = trim ( prefix ) // '_elements.txt' output_node_filename = trim ( prefix ) // '_ref_nodes.txt' output_element_filename = trim ( prefix ) // '_ref_elements.txt' ! ! Read the node data. ! call r8mat_header_read ( input_node_filename, dim_num, node_num1 ) if ( dim_num /= 3 ) then write ( *, * ) ' ' write ( *, '(a)' ) 'TET_MESH_REFINE - Fatal error!' write ( *, '(a)' ) ' Data is not for 3-dimensional space.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( input_node_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension DIM_NUM = ', dim_num write ( *, '(a,i8)' ) ' Number of input nodes = ', node_num1 allocate ( node_xyz1(1:dim_num,1:node_num1) ) call r8mat_data_read ( input_node_filename, dim_num, node_num1, node_xyz1 ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' & // trim ( input_node_filename ) //'".' call r8mat_transpose_print_some ( dim_num, node_num1, node_xyz1, 1, 1, & dim_num, 5, ' The first 5 input nodes:' ) ! ! Read the tetra data. ! call i4mat_header_read ( input_element_filename, tetra_order, tetra_num1 ) if ( tetra_order == 4 ) then else if ( tetra_order == 10 ) then write ( *, * ) ' ' write ( *, '(a)' ) 'TET_MESH_REFINE - Fatal error!' write ( *, '(a)' ) ' This program cannot yet handle the 10-node case.' write ( *, '(a)' ) ' Try using the sequence:' write ( *, '(a)' ) ' TET_MESH_Q2L --> TET_MESH_REFINE --> TET_MESH_L2Q.' stop else write ( *, * ) ' ' write ( *, '(a)' ) 'TET_MESH_REFINE - Fatal error!' write ( *, '(a)' ) ' Data is not for 4-node or 10-node tetras.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( input_element_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Tetrahedron order = ', tetra_order write ( *, '(a,i8)' ) ' Number of input tetras = ', tetra_num1 allocate ( tetra_node1(1:tetra_order,1:tetra_num1) ) call i4mat_data_read ( input_element_filename, tetra_order, tetra_num1, & tetra_node1 ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' & // trim ( input_element_filename ) //'".' call i4mat_transpose_print_some ( tetra_order, tetra_num1, tetra_node1, & 1, 1, tetra_order, 5, ' First 5 input elements:' ) ! ! Detect and correct 0-based indexing. ! call mesh_base_one ( node_num1, tetra_order, tetra_num1, tetra_node1 ) ! ! Compute the refined mesh ! if ( tetra_order == 4 ) then allocate ( edge_data(5,6*tetra_num1) ) call tet_mesh_order4_refine_size ( node_num1, tetra_num1, tetra_node1, & node_num2, tetra_num2, edge_data ) write ( *, '(a,i8)' ) ' Number of refined nodes = ', node_num2 write ( *, '(a,i8)' ) ' Number of refined tetras = ', tetra_num2 allocate ( node_xyz2(1:dim_num,1:node_num2) ) allocate ( tetra_node2(1:tetra_order,1:tetra_num2) ) call tet_mesh_order4_refine_compute ( node_num1, tetra_num1, node_xyz1, & tetra_node1, node_num2, tetra_num2, edge_data, node_xyz2, tetra_node2 ) else if ( tetra_order == 10 ) then end if ! ! Print a small amount of the refined data. ! call r8mat_transpose_print_some ( dim_num, node_num2, node_xyz2, & 1, 1, dim_num, 5, ' First 5 output nodes:' ) call i4mat_transpose_print_some ( tetra_order, tetra_num2, tetra_node2, & 1, 1, tetra_order, 5, ' First 5 output tetrahedrons' ) ! ! Write out the node and tetra data for the refined mesh. ! call r8mat_write ( output_node_filename, dim_num, node_num2, node_xyz2 ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Wrote the refined nodes to "' & // trim ( output_node_filename ) //'".' call i4mat_write ( output_element_filename, tetra_order, tetra_num2, & tetra_node2 ) write ( *, '(a)' ) ' Wrote the refined tetrahedrons to "' & // trim ( output_element_filename ) //'".' ! ! Free memory. ! deallocate ( edge_data ) deallocate ( node_xyz1 ) deallocate ( node_xyz2 ) deallocate ( tetra_node1 ) deallocate ( tetra_node2 ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TET_MESH_REFINE' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( c ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character C, the character to capitalize. ! implicit none character c integer ( kind = 4 ) itemp itemp = ichar ( c ) if ( 97 <= itemp .and. itemp <= 122 ) then c = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer ( kind = 4 ) DIGIT, the corresponding value. ! If C was 'illegal', then DIGIT is -1. ! implicit none character c integer ( kind = 4 ) digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_filename, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the file. ! ! Output, integer ( kind = 4 ) COLUMN_NUM, the number of columns in the file. ! implicit none integer ( kind = 4 ) column_num logical got_one character ( len = * ) input_filename integer ( kind = 4 ) input_unit integer ( kind = 4 ) ios character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & form = 'formatted', access = 'sequential', iostat = ios ) if ( ios /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a)' ) ' Could not open the file:' write ( *, '(a)' ) ' ' // trim ( input_filename ) return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_filename, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ( kind = 4 ) ROW_NUM, the number of rows found. ! implicit none integer ( kind = 4 ) bad_num integer ( kind = 4 ) comment_num integer ( kind = 4 ) ierror character ( len = * ) input_filename integer ( kind = 4 ) input_unit integer ( kind = 4 ) ios character ( len = 255 ) line integer ( kind = 4 ) record_num integer ( kind = 4 ) row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = ios ) if ( ios /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a)' ) ' Could not open the input file: ' // & trim ( input_filename ) stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer ( kind = 4 ) IUNIT, the free unit number. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) ios integer ( kind = 4 ) iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine i4_swap ( i, j ) !*****************************************************************************80 ! !! I4_SWAP swaps two I4's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 November 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, integer ( kind = 4 ) I, J. On output, the values of I and ! J have been interchanged. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k k = i i = j j = k return end subroutine i4col_compare ( m, n, a, i, j, isgn ) !*****************************************************************************80 ! !! I4COL_COMPARE compares columns I and J of an I4COL. ! ! Example: ! ! Input: ! ! M = 3, N = 4, I = 2, J = 4 ! ! A = ( ! 1 2 3 4 ! 5 6 7 8 ! 9 10 11 12 ) ! ! Output: ! ! ISGN = -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an array of N columns of vectors ! of length M. ! ! Input, integer ( kind = 4 ) I, J, the columns to be compared. ! I and J must be between 1 and N. ! ! Output, integer ( kind = 4 ) ISGN, the results of the comparison: ! -1, column I < column J, ! 0, column I = column J, ! +1, column J < column I. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) i integer ( kind = 4 ) isgn integer ( kind = 4 ) j integer ( kind = 4 ) k ! ! Check. ! if ( i < 1 .or. n < i ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a)' ) ' Column index I is out of bounds.' stop end if if ( j < 1 .or. n < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a)' ) ' Column index J is out of bounds.' stop end if isgn = 0 if ( i == j ) then return end if k = 1 do while ( k <= m ) if ( a(k,i) < a(k,j) ) then isgn = -1 return else if ( a(k,j) < a(k,i) ) then isgn = +1 return end if k = k + 1 end do return end subroutine i4col_sort_a ( m, n, a ) !*****************************************************************************80 ! !! I4COL_SORT_A ascending sorts an I4COL. ! ! Discussion: ! ! In lexicographic order, the statement "X < Y", applied to two real ! vectors X and Y of length M, means that there is some index I, with ! 1 <= I <= M, with the property that ! ! X(J) = Y(J) for J < I, ! and ! X(I) < Y(I). ! ! In other words, the first time they differ, X is smaller. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 25 September 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of A, and the length of ! a vector of data. ! ! Input, integer ( kind = 4 ) N, the number of columns of A. ! ! Input/output, integer ( kind = 4 ) A(M,N). ! On input, the array of N columns of M-vectors. ! On output, the columns of A have been sorted in ascending ! lexicographic order. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) i integer ( kind = 4 ) indx integer ( kind = 4 ) isgn integer ( kind = 4 ) j if ( m <= 0 ) then return end if if ( n <= 1 ) then return end if ! ! Initialize. ! i = 0 indx = 0 isgn = 0 j = 0 ! ! Call the external heap sorter. ! do call sort_heap_external ( n, indx, i, j, isgn ) ! ! Interchange the I and J objects. ! if ( 0 < indx ) then call i4col_swap ( m, n, a, i, j ) ! ! Compare the I and J objects. ! else if ( indx < 0 ) then call i4col_compare ( m, n, a, i, j, isgn ) else if ( indx == 0 ) then exit end if end do return end subroutine i4col_sort2_a ( m, n, a ) !*****************************************************************************80 ! !! I4COL_SORT2_A ascending sorts the elements of each column of an I4COL. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 October 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of A. ! ! Input, integer ( kind = 4 ) N, the number of columns of A, and the ! length of a vector of data. ! ! Input/output, integer ( kind = 4 ) A(M,N). ! On input, the array of N columns of M vectors. ! On output, the elements of each column of A have been sorted in descending ! order. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) col integer ( kind = 4 ) i integer ( kind = 4 ) indx integer ( kind = 4 ) isgn integer ( kind = 4 ) j if ( m <= 1 ) then return end if if ( n <= 0 ) then return end if ! ! Initialize. ! do col = 1, n i = 0 indx = 0 isgn = 0 j = 0 ! ! Call the external heap sorter. ! do call sort_heap_external ( m, indx, i, j, isgn ) ! ! Interchange the I and J objects. ! if ( 0 < indx ) then call i4_swap ( a(i,col), a(j,col) ) ! ! Compare the I and J objects. ! else if ( indx < 0 ) then if ( a(j,col) < a(i,col) ) then isgn = +1 else isgn = -1 end if else if ( indx == 0 ) then exit end if end do end do return end subroutine i4col_sorted_unique_count ( m, n, a, unique_num ) !*****************************************************************************80 ! !! I4COL_SORTED_UNIQUE_COUNT counts unique elements in an I4COL. ! ! Discussion: ! ! The columns of the array may be ascending or descending sorted. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 17 February 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), a sorted array, containing ! N columns of data. ! ! Output, integer ( kind = 4 ) UNIQUE_NUM, the number of unique columns. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) j1 integer ( kind = 4 ) j2 integer ( kind = 4 ) unique_num if ( n <= 0 ) then unique_num = 0 return end if unique_num = 1 j1 = 1 do j2 = 2, n if ( any ( a(1:m,j1) /= a(1:m,j2) ) ) then unique_num = unique_num + 1 j1 = j2 end if end do return end subroutine i4col_swap ( m, n, a, i, j ) !*****************************************************************************80 ! !! I4COL_SWAP swaps columns I and J of an I4COL. ! ! Example: ! ! Input: ! ! M = 3, N = 4, I = 2, J = 4 ! ! A = ( ! 1 2 3 4 ! 5 6 7 8 ! 9 10 11 12 ) ! ! Output: ! ! A = ( ! 1 4 3 2 ! 5 8 7 6 ! 9 12 11 10 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 April 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns ! in the array. ! ! Input, integer ( kind = 4 ) A(M,N), an array of N columns of length M. ! ! Input, integer ( kind = 4 ) I, J, the columns to be swapped. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) col(m) integer ( kind = 4 ) i integer ( kind = 4 ) j if ( i < 1 .or. n < i .or. j < 1 .or. n < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_SWAP - Fatal error!' write ( *, '(a)' ) ' I or J is out of bounds.' write ( *, '(a,i8)' ) ' I = ', i write ( *, '(a,i8)' ) ' J = ', j write ( *, '(a,i8)' ) ' N = ', n stop end if if ( i == j ) then return end if col(1:m) = a(1:m,i) a(1:m,i) = a(1:m,j) a(1:m,j) = col(1:m) return end subroutine i4i4_sort_a ( i1, i2, j1, j2 ) !*****************************************************************************80 ! !! I4I4_SORT_A ascending sorts a pair of I4's. ! ! Discussion: ! ! The program allows the reasonable call: ! ! call i4i4_sort_a ( i1, i2, i1, i2 ) ! ! and this will return the reasonable result. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 October 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) I1, I2, the values to sort. ! ! Output, integer ( kind = 4 ) J1, J2, the sorted values. ! implicit none integer ( kind = 4 ) i1 integer ( kind = 4 ) i2 integer ( kind = 4 ) j1 integer ( kind = 4 ) j2 integer ( kind = 4 ) k1 integer ( kind = 4 ) k2 ! ! Copy arguments, so that the user can make "reasonable" calls like: ! ! call i4i4_sort_a ( i1, i2, i1, i2 ) ! k1 = i1 k2 = i2 j1 = min ( k1, k2 ) j2 = max ( k1, k2 ) return end subroutine i4mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! I4MAT_DATA_READ reads data from an I4MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine ! will return after reading N points. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 27 January 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Output, integer ( kind = 4 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) ierror character ( len = * ) input_filename integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit integer ( kind = 4 ) j character ( len = 255 ) line integer ( kind = 4 ) table(m,n) integer ( kind = 4 ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = 2 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_i4vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine i4mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! I4MAT_HEADER_READ reads the header from an I4MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ( kind = 4 ) M, spatial dimension. ! ! Output, integer ( kind = 4 ) N, the number of points. ! implicit none character ( len = * ) input_filename integer ( kind = 4 ) m integer ( kind = 4 ) n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 February 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ), parameter :: incx = 10 integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) character ( len = 7 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2 integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7)') i end do write ( *, '('' Row '',10a7)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i7)' ) a(i,j) end do write ( *, '(i5,1x,10a7)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine i4mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! I4MAT_WRITE writes an I4MAT file. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Input, integer ( kind = 4 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) j character ( len = * ) output_filename integer ( kind = 4 ) output_status integer ( kind = 4 ) output_unit character ( len = 30 ) string integer ( kind = 4 ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! write ( string, '(a1,i8,a4)' ) '(', m, 'i10)' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do ! ! Close the file. ! close ( unit = output_unit ) return end subroutine mesh_base_one ( node_num, element_order, element_num, element_node ) !*****************************************************************************80 ! !! MESH_BASE_ONE ensures that the element definition is one-based. ! ! Discussion: ! ! The ELEMENT_NODE array contains nodes indices that form elements. ! The convention for node indexing might start at 0 or at 1. ! Since a FORTRAN90 program will naturally assume a 1-based indexing, it is ! necessary to check a given element definition and, if it is actually ! 0-based, to convert it. ! ! This function attempts to detect 9-based node indexing and correct it. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 29 September 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, int NODE_NUM, the number of nodes. ! ! Input, int ELEMENT_ORDER, the order of the elements. ! ! Input, int ELEMENT_NUM, the number of elements. ! ! Input/output, int ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the element ! definitions. ! implicit none integer ( kind = 4 ) element_num integer ( kind = 4 ) element_order integer ( kind = 4 ) element integer ( kind = 4 ) element_node(element_order,element_num) integer ( kind = 4 ) node integer ( kind = 4 ) node_max integer ( kind = 4 ) node_min integer ( kind = 4 ) node_num integer ( kind = 4 ) order node_min = node_num + 1 node_max = -1 node_min = minval ( element_node(1:element_order,1:element_num) ) node_max = maxval ( element_node(1:element_order,1:element_num) ) if ( node_min == 0 .and. node_max == node_num - 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE:' write ( *, '(a)' )' The element indexing appears to be 0-based!' write ( *, '(a)' )' This will be converted to 1-based.' element_node(1:element_order,1:element_num) = & element_node(1:element_order,1:element_num) + 1 else if ( node_min == 1 .and. node_max == node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ZERO:' write ( *, '(a)' )' The element indexing appears to be 1-based!' write ( *, '(a)' )' No conversion is necessary.' else write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ZERO - Warning!' write ( *, '(a)' )' The element indexing is not of a recognized type.' end if return end subroutine r8mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Output, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) ierror character ( len = * ) input_filename integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit integer ( kind = 4 ) j character ( len = 255 ) line real ( kind = 8 ) table(m,n) real ( kind = 8 ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ( kind = 4 ) M, spatial dimension. ! ! Output, integer ( kind = 4 ) N, the number of points. ! implicit none character ( len = * ) input_filename integer ( kind = 4 ) m integer ( kind = 4 ) n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2 integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7,7x)') i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Input, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) j character ( len = * ) output_filename integer ( kind = 4 ) output_status integer ( kind = 4 ) output_unit character ( len = 30 ) string real ( kind = 8 ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! ! For greater precision in the output file, try: ! ! '(', m, 'g', 24, '.', 16, ')' ! write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 14, '.', 6, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do ! ! Close the file. ! close ( unit = output_unit ) return end function s_index_last ( s, sub ) !*****************************************************************************80 ! !! S_INDEX_LAST finds the LAST occurrence of a given substring. ! ! Discussion: ! ! It returns the location in the string at which the substring SUB is ! first found, or 0 if the substring does not occur at all. ! ! The routine is also trailing blank insensitive. This is very ! important for those cases where you have stored information in ! larger variables. If S is of length 80, and SUB is of ! length 80, then if S = 'FRED' and SUB = 'RED', a match would ! not be reported by the standard FORTRAN INDEX, because it treats ! both variables as being 80 characters long! This routine assumes that ! trailing blanks represent garbage! ! ! This means that this routine cannot be used to find, say, the last ! occurrence of a substring 'A ', since it assumes the blank space ! was not specified by the user, but is, rather, padding by the ! system. However, as a special case, this routine can properly handle ! the case where either S or SUB is all blanks. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be searched. ! ! Input, character ( len = * ) SUB, the substring to search for. ! ! Output, integer ( kind = 4 ) S_INDEX_LAST. 0 if SUB does not occur in ! the string. Otherwise S_INDEX_LAST = I, where S(I:I+LENS-1) = SUB, ! where LENS is the length of SUB, and is the last place ! this happens. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) llen1 integer ( kind = 4 ) llen2 character ( len = * ) s integer ( kind = 4 ) s_index_last character ( len = * ) sub s_index_last = 0 llen1 = len_trim ( s ) llen2 = len_trim ( sub ) ! ! In case S or SUB is blanks, use LEN ! if ( llen1 == 0 ) then llen1 = len ( s ) end if if ( llen2 == 0 ) then llen2 = len ( sub ) end if if ( llen1 < llen2 ) then return end if do j = 1, llen1+1-llen2 i = llen1 + 2 - llen2 - j if ( s(i:i+llen2-1) == sub ) then s_index_last = i return end if end do return end subroutine s_to_i4 ( s, ival, ierror, length ) !*****************************************************************************80 ! !! S_TO_I4 reads an I4 from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, a string to be examined. ! ! Output, integer ( kind = 4 ) IVAL, the integer value read from the string. ! If the string is blank, then IVAL will be returned 0. ! ! Output, integer ( kind = 4 ) IERROR, an error flag. ! 0, no error. ! 1, an error occurred. ! ! Output, integer ( kind = 4 ) LENGTH, the number of characters of S used. ! implicit none character c integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) isgn integer ( kind = 4 ) istate integer ( kind = 4 ) ival integer ( kind = 4 ) length character ( len = * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) ! ! Haven't read anything. ! if ( istate == 0 ) then if ( c == ' ' ) then else if ( c == '-' ) then istate = 1 isgn = -1 else if ( c == '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read the sign, expecting digits. ! else if ( istate == 1 ) then if ( c == ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read at least one digit, expecting more. ! else if ( istate == 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do ! ! If we read all the characters in the string, see if we're OK. ! if ( istate == 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_i4vec ( s, n, ivec, ierror ) !*****************************************************************************80 ! !! S_TO_I4VEC reads an I4VEC from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 08 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer ( kind = 4 ) N, the number of values expected. ! ! Output, integer ( kind = 4 ) IVEC(N), the values read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) ilo integer ( kind = 4 ) ivec(n) integer ( kind = 4 ) length character ( len = * ) s i = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_i4 ( s(ilo:), ivec(i), ierror, length ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + length end do return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8VEC from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = 8 ) DVAL, the value read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer ( kind = 4 ) LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none logical ch_eqi character c real ( kind = 8 ) dval integer ( kind = 4 ) ierror integer ( kind = 4 ) ihave integer ( kind = 4 ) isgn integer ( kind = 4 ) iterm integer ( kind = 4 ) jbot integer ( kind = 4 ) jsgn integer ( kind = 4 ) jtop integer ( kind = 4 ) length integer ( kind = 4 ) nchar integer ( kind = 4 ) ndig real ( kind = 8 ) rbot real ( kind = 8 ) rexp real ( kind = 8 ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length+1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = 8 ) & / real ( jbot, kind = 8 ) ) end if end if dval = real ( isgn, kind = 8 ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer ( kind = 4 ) N, the number of values expected. ! ! Output, real ( kind = 8 ) RVEC(N), the values read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) ilo integer ( kind = 4 ) lchar real ( kind = 8 ) rvec(n) character ( len = * ) s i = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer ( kind = 4 ) NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none logical blank integer ( kind = 4 ) i integer ( kind = 4 ) lens integer ( kind = 4 ) nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine sort_heap_external ( n, indx, i, j, isgn ) !*****************************************************************************80 ! !! SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. ! ! Discussion: ! ! The actual list of data is not passed to the routine. Hence this ! routine may be used to sort integers, real ( kind = 8 )s, numbers, names, ! dates, shoe sizes, and so on. After each call, the routine asks ! the user to compare or interchange two items, until a special ! return value signals that the sorting is completed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 February 2004 ! ! Author: ! ! Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms for Computers and Calculators, ! Second Edition, ! Academic Press, 1978, ! ISBN: 0-12-519260-6, ! LC: QA164.N54. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of items to be sorted. ! ! Input/output, integer ( kind = 4 ) INDX, the main communication signal. ! ! The user must set INDX to 0 before the first call. ! Thereafter, the user should not change the value of INDX until ! the sorting is done. ! ! On return, if INDX is ! ! greater than 0, ! * interchange items I and J; ! * call again. ! ! less than 0, ! * compare items I and J; ! * set ISGN = -1 if I < J, ISGN = +1 if J < I; ! * call again. ! ! equal to 0, the sorting is done. ! ! Output, integer ( kind = 4 ) I, J, the indices of two items. ! On return with INDX positive, elements I and J should be interchanged. ! On return with INDX negative, elements I and J should be compared, and ! the result reported in ISGN on the next call. ! ! Input, integer ( kind = 4 ) ISGN, results of comparison of elements ! I and J. ! (Used only when the previous call returned INDX less than 0). ! ISGN <= 0 means I is less than or equal to J; ! 0 <= ISGN means I is greater than or equal to J. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ), save :: i_save = 0 integer ( kind = 4 ) indx integer ( kind = 4 ) isgn integer ( kind = 4 ) j integer ( kind = 4 ), save :: j_save = 0 integer ( kind = 4 ), save :: k = 0 integer ( kind = 4 ), save :: k1 = 0 integer ( kind = 4 ) n integer ( kind = 4 ), save :: n1 = 0 ! ! INDX = 0: This is the first call. ! if ( indx == 0 ) then i_save = 0 j_save = 0 k = n / 2 k1 = k n1 = n ! ! INDX < 0: The user is returning the results of a comparison. ! else if ( indx < 0 ) then if ( indx == -2 ) then if ( isgn < 0 ) then i_save = i_save + 1 end if j_save = k1 k1 = i_save indx = -1 i = i_save j = j_save return end if if ( 0 < isgn ) then indx = 2 i = i_save j = j_save return end if if ( k <= 1 ) then if ( n1 == 1 ) then i_save = 0 j_save = 0 indx = 0 else i_save = n1 n1 = n1 - 1 j_save = 1 indx = 1 end if i = i_save j = j_save return end if k = k - 1 k1 = k ! ! 0 < INDX, the user was asked to make an interchange. ! else if ( indx == 1 ) then k1 = k end if do i_save = 2 * k1 if ( i_save == n1 ) then j_save = k1 k1 = i_save indx = -1 i = i_save j = j_save return else if ( i_save <= n1 ) then j_save = i_save + 1 indx = -2 i = i_save j = j_save return end if if ( k <= 1 ) then exit end if k = k - 1 k1 = k end do if ( n1 == 1 ) then i_save = 0 j_save = 0 indx = 0 i = i_save j = j_save else i_save = n1 n1 = n1 - 1 j_save = 1 indx = 1 i = i_save j = j_save end if return end subroutine tet_mesh_order4_refine_compute ( node_num1, tetra_num1, node_xyz1, & tetra_node1, node_num2, tetra_num2, edge_data, node_xyz2, tetra_node2 ) !*****************************************************************************80 ! !! TET_MESH_ORDER4_REFINE_COMPUTE computes a refined order 4 tet mesh. ! ! Discussion: ! ! A refined 4-node tet mesh can be derived from a given ! 4-node tet mesh by interpolating nodes at the midpoint of ! every edge of the mesh. ! ! The mesh is described indirectly, as the sum of individual ! tetrahedrons. A single physical edge may be a logical edge of ! any number of tetrahedrons. It is important, however, that a ! new node be created exactly once for each edge, assigned an index, ! and associated with every tetrahedron that shares this edge. ! ! This routine handles that problem. ! ! The primary amount of work occurs in sorting a list of 6 * TETRA_NUM ! data items, one item for every edge of every tetrahedron. Each ! data item records, for a given tetrahedron edge, the global indices ! of the two endpoints, the local indices of the two endpoints, ! and the index of the tetrahedron. ! ! Through careful sorting, it is possible to arrange this data in ! a way that allows the proper generation of the interpolated nodes. ! ! Let us add the new nodes and temporarily assign them local indices ! 5 through X, based on the following ordering: ! ! 1, 2, 3, 4, (1+2), (1+3), (1+4), (2+3), (2+4), (3+4). ! ! Then let us assign these nodes to eight subtetrahedrons as follows: ! ! 1, 5, 6, 7 ! 2, 5, 8, 9 ! 3, 6, 8, 9 ! 4, 7, 9, X ! 5, 6, 7, 9 ! 5, 6, 8, 9 ! 6, 7, 9, X ! 6, 8, 9, X ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 25 January 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Anwei Liu, Barry Joe, ! Quality Local Refinement of Tetrahedral Meshes Based ! on 8-Subtetrahedron Subdivision, ! Mathematics of Computation, ! Volume 65, Number 215, July 1996, pages 1183-1200. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM1, the number of nodes in the input ! mesh. ! ! Input, integer ( kind = 4 ) TETRA_NUM1, the number of tetrahedrons in the ! input mesh. ! ! Input, real ( kind = 8 ) NODE_XYZ1(3,NODE_NUM1), the coordinates of ! the nodes that make up the input mesh. ! ! Input, integer ( kind = 4 ) TETRA_NODE1(4,TETRA_NUM1), the indices of the ! nodes in the input mesh. ! ! Input, integer ( kind = 4 ) NODE_NUM2, the number of nodes for the ! refined mesh. ! ! Input, integer ( kind = 4 ) TETRA_NUM2, the number of tetrahedrons in the ! refined mesh. ! ! Input, integer ( kind = 4 ) EDGE_DATA(5,6*TETRA_NUM), edge data. ! ! Output, real ( kind = 8 ) NODE_XYZ2(3,NODE_NUM2), the coordinates of ! the nodes that make up the output mesh. ! ! Output, integer ( kind = 4 ) TETRA_NODE2(4,TETRA_NUM2), the indices of the ! nodes in the output mesh. ! implicit none integer ( kind = 4 ) node_num1 integer ( kind = 4 ) node_num2 integer ( kind = 4 ) tetra_num1 integer ( kind = 4 ) tetra_num2 integer ( kind = 4 ) edge integer ( kind = 4 ) edge_data(5,6*tetra_num1) integer ( kind = 4 ) n1 integer ( kind = 4 ) n1_old integer ( kind = 4 ) n2 integer ( kind = 4 ) n2_old integer ( kind = 4 ) node real ( kind = 8 ) node_xyz1(3,node_num1) real ( kind = 8 ) node_xyz2(3,node_num2) integer ( kind = 4 ) tetra_node1(4,tetra_num1) integer ( kind = 4 ) tetra_node2(4,tetra_num2) integer ( kind = 4 ) tetra1 integer ( kind = 4 ) tetra2 integer ( kind = 4 ) v integer ( kind = 4 ) v1 integer ( kind = 4 ) v2 ! ! Generate the index and coordinates of the new midside nodes, ! and update the tetradehron-node data. ! node_xyz2(1:3,1:node_num1) = node_xyz1(1:3,1:node_num1) tetra_node2(1:4,1:tetra_num2) = -1 ! ! The vertices of the input tetrahedron can be assigned now. ! do tetra1 = 1, tetra_num1 tetra_node2(1,(tetra1-1)*8+1) = tetra_node1(1,tetra1) tetra_node2(1,(tetra1-1)*8+2) = tetra_node1(2,tetra1) tetra_node2(1,(tetra1-1)*8+3) = tetra_node1(3,tetra1) tetra_node2(1,(tetra1-1)*8+4) = tetra_node1(4,tetra1) end do node = node_num1 n1_old = -1 n2_old = -1 do edge = 1, 6 * tetra_num1 ! ! Read the data defining the edge. ! n1 = edge_data(1,edge) n2 = edge_data(2,edge) ! ! If this edge is new, create the coordinates and index. ! if ( n1 /= n1_old .or. n2 /= n2_old ) then node = node + 1 if ( node_num2 < node ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TET_MESH_ORDER4_REFINE_COMPUTE - Fatal error!' write ( *, '(a)' ) ' Node index exceeds NODE_NUM2.' stop end if node_xyz2(1:3,node) = & ( node_xyz2(1:3,n1) + node_xyz2(1:3,n2) ) / 2.0D+00 n1_old = n1 n2_old = n2 end if ! ! Assign the node to the tetrahedron. ! v1 = edge_data(3,edge) v2 = edge_data(4,edge) tetra1 = edge_data(5,edge) ! ! We know the two vertices that bracket this new node. ! This tells us whether it is new node number 5, 6, 7, 8, 9 or 10. ! This tells us which of the new subtetrahedrons it belongs to, ! and what position it occupies. ! if ( v1 == 1 .and. v2 == 2 ) then tetra_node2(2,(tetra1-1)*8+1) = node tetra_node2(2,(tetra1-1)*8+2) = node tetra_node2(1,(tetra1-1)*8+5) = node tetra_node2(1,(tetra1-1)*8+6) = node else if ( v1 == 1 .and. v2 == 3 ) then tetra_node2(3,(tetra1-1)*8+1) = node tetra_node2(2,(tetra1-1)*8+3) = node tetra_node2(2,(tetra1-1)*8+5) = node tetra_node2(2,(tetra1-1)*8+6) = node tetra_node2(1,(tetra1-1)*8+7) = node tetra_node2(1,(tetra1-1)*8+8) = node else if ( v1 == 1 .and. v2 == 4 ) then tetra_node2(4,(tetra1-1)*8+1) = node tetra_node2(2,(tetra1-1)*8+4) = node tetra_node2(3,(tetra1-1)*8+5) = node tetra_node2(2,(tetra1-1)*8+7) = node else if ( v1 == 2 .and. v2 == 3 ) then tetra_node2(3,(tetra1-1)*8+2) = node tetra_node2(3,(tetra1-1)*8+3) = node tetra_node2(3,(tetra1-1)*8+6) = node tetra_node2(2,(tetra1-1)*8+8) = node else if ( v1 == 2 .and. v2 == 4 ) then tetra_node2(4,(tetra1-1)*8+2) = node tetra_node2(4,(tetra1-1)*8+3) = node tetra_node2(3,(tetra1-1)*8+4) = node tetra_node2(4,(tetra1-1)*8+5) = node tetra_node2(4,(tetra1-1)*8+6) = node tetra_node2(3,(tetra1-1)*8+7) = node tetra_node2(3,(tetra1-1)*8+8) = node else if ( v1 == 3 .and. v2 == 4 ) then tetra_node2(4,(tetra1-1)*8+4) = node tetra_node2(4,(tetra1-1)*8+7) = node tetra_node2(4,(tetra1-1)*8+8) = node end if end do return end subroutine tet_mesh_order4_refine_size ( node_num1, tetra_num1, tetra_node1, & node_num2, tetra_num2, edge_data ) !*****************************************************************************80 ! !! TET_MESH_ORDER4_REFINE_SIZE sizes a refined order 4 tet mesh. ! ! Discussion: ! ! A refined tet mesh can be derived from an existing one by interpolating ! nodes at the midpoint of every edge of the mesh. ! ! The mesh is described indirectly, as the sum of individual ! tetrahedrons. A single physical edge may be a logical edge of ! any number of tetrahedrons. It is important, however, that a ! new node be created exactly once for each edge, assigned an index, ! and associated with every tetrahedron that shares this edge. ! ! This routine handles that problem. ! ! The primary amount of work occurs in sorting a list of 6 * TETRA_NUM ! data items, one item for every edge of every tetrahedron. Each ! data item records, for a given tetrahedron edge, the global indices ! of the two endpoints, the local indices of the two endpoints, ! and the index of the tetrahedron. ! ! Through careful sorting, it is possible to arrange this data in ! a way that allows the proper generation of the interpolated nodes. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 24 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM1, the number of nodes in the ! original mesh. ! ! Input, integer ( kind = 4 ) TETRA_NUM1, the number of tetrahedrons in the ! original mesh. ! ! Input, integer ( kind = 4 ) TETRA_NODE1(4,TETRA_NUM1), the indices of the ! nodes that form the tetrahedrons in the input mesh. ! ! Output, integer ( kind = 4 ) NODE_NUM2, the number of nodes in the refined ! mesh. ! ! Output, integer ( kind = 4 ) TETRA_NUM2, the number of tetrahedrons in the ! refined mesh. ! ! Output, integer ( kind = 4 ) EDGE_DATA(5,6*TETRA_NUM1), edge data. ! implicit none integer ( kind = 4 ) node_num1 integer ( kind = 4 ) tetra_num1 integer ( kind = 4 ) a integer ( kind = 4 ) b integer ( kind = 4 ) edge integer ( kind = 4 ) edge_data(5,6*tetra_num1) integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) l integer ( kind = 4 ) n1 integer ( kind = 4 ) n1_old integer ( kind = 4 ) n2 integer ( kind = 4 ) n2_old integer ( kind = 4 ) node_num2 integer ( kind = 4 ) tetra integer ( kind = 4 ) tetra_node1(4,tetra_num1) integer ( kind = 4 ) tetra_num2 ! ! Step 1. ! From the list of nodes for tetrahedron T, of the form: (I,J,K,L) ! construct the six edge relations: ! ! (I,J,1,2,T) ! (I,K,1,3,T) ! (I,L,1,4,T) ! (J,K,2,3,T) ! (J,L,2,4,T) ! (K,L,3,4,T) ! ! In order to make matching easier, we reorder each pair of nodes ! into ascending order. ! do tetra = 1, tetra_num1 i = tetra_node1(1,tetra) j = tetra_node1(2,tetra) k = tetra_node1(3,tetra) l = tetra_node1(4,tetra) call i4i4_sort_a ( i, j, a, b ) edge_data(1:5,6*(tetra-1)+1) = (/ a, b, 1, 2, tetra /) call i4i4_sort_a ( i, k, a, b ) edge_data(1:5,6*(tetra-1)+2) = (/ a, b, 1, 3, tetra /) call i4i4_sort_a ( i, l, a, b ) edge_data(1:5,6*(tetra-1)+3) = (/ a, b, 1, 4, tetra /) call i4i4_sort_a ( j, k, a, b ) edge_data(1:5,6*(tetra-1)+4) = (/ a, b, 2, 3, tetra /) call i4i4_sort_a ( j, l, a, b ) edge_data(1:5,6*(tetra-1)+5) = (/ a, b, 2, 4, tetra /) call i4i4_sort_a ( k, l, a, b ) edge_data(1:5,6*(tetra-1)+6) = (/ a, b, 3, 4, tetra /) end do ! ! Step 2. Perform an ascending dictionary sort on the neighbor relations. ! We only intend to sort on rows 1:2; the routine we call here ! sorts on the full column but that won't hurt us. ! ! What we need is to find all cases where tetrahedrons share an edge. ! By sorting the columns of the EDGE_DATA array, we will put shared edges ! next to each other. ! call i4col_sort_a ( 5, 6*tetra_num1, edge_data ) ! ! Step 3. All the tetrahedrons which share an edge show up as consecutive ! columns with identical first two entries. Figure out how many new ! nodes there are, and allocate space for their coordinates. ! node_num2 = node_num1 n1_old = -1 n2_old = -1 do edge = 1, 6 * tetra_num1 n1 = edge_data(1,edge) n2 = edge_data(2,edge) if ( n1 /= n1_old .or. n2 /= n2_old ) then node_num2 = node_num2 + 1 n1_old = n1 n2_old = n2 end if end do tetra_num2 = 8 * tetra_num1 return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end