program main !*****************************************************************************80 ! !! MAIN is the main program for TABLE_MERGE. ! ! Discussion: ! ! TABLE_MERGE merges points in a dataset. ! ! The dataset is presumed to be an M by N array of real numbers, ! where M is the spatial dimension, and N is the number of sample points. ! ! The dataset is presumed to be stored in a file, with N records, ! one per each sample point. (Comment records may be included, ! which begin with '#'.) ! ! The program reads the data file and a tolerance, merges those ! points that are closer than some tolerance, and writes out ! a file of the merged points. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2009 ! ! Author: ! ! John Burkardt ! ! Usage: ! ! table_merge input_file_name tolerance ! implicit none integer ( kind = 4 ) arg_num character ( len = 255 ) extension integer ( kind = 4 ) iarg integer ( kind = 4 ) iargc integer ( kind = 4 ) ierror character ( len = 255 ) :: input_file_name = ' ' integer ( kind = 4 ) input_n real ( kind = 8 ), allocatable, dimension ( :, : ) :: input_table integer ( kind = 4 ) length integer ( kind = 4 ) m character ( len = 255 ) :: output_file_name = ' ' integer ( kind = 4 ) output_n real ( kind = 8 ) tolerance character ( len = 255 ) :: tolerance_string call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TABLE_MERGE' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Read a dataset of N points in M dimensions,' write ( *, '(a)' ) ' and a tolerance TOL,' write ( *, '(a)' ) ' write the modified dataset to a file.' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! If at least one command line argument, it's the input file name. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, input_file_name ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TABLE_MERGE:' write ( *, '(a)' ) ' Please enter the name of the input file.' read ( *, '(a)' ) input_file_name end if ! ! If at least two command line arguments, the second one is the tolerance. ! if ( 2 <= arg_num ) then iarg = 2 call getarg ( iarg, tolerance_string ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TABLE_MERGE:' write ( *, '(a)' ) ' Please enter the tolerance.' read ( *, '(a)' ) tolerance_string end if call s_to_r8 ( tolerance_string, tolerance, ierror, length ) ! ! Create the output file name from the input file name. ! output_file_name = input_file_name extension = trim ( tolerance_string ) // '.txt' call file_name_ext_swap ( output_file_name, extension ) call r8mat_header_read ( input_file_name, m, input_n ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' // trim ( input_file_name ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension M = ', m write ( *, '(a,i8)' ) ' Number of points N = ', input_n allocate ( input_table(1:m,1:input_n) ) call r8mat_data_read ( input_file_name, m, input_n, input_table ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' // trim ( input_file_name ) //'".' call r8mat_transpose_print_some ( m, input_n, input_table, 1, 1, 5, 5, & ' 5 by 5 portion of data read from file:' ) call node_cluster_epsilon ( m, input_n, input_table, tolerance, output_n ) ! ! Display the output values. ! write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Number of input points = ', input_n write ( *, '(a,i8)' ) ' Number of output points = ', output_n write ( *, '(a,i8)' ) ' Number of eliminated points = ', input_n - output_n call r8mat_transpose_print_some ( m, output_n, input_table, 1, 1, 5, 5, & ' 5 by 5 portion of merged data:' ) ! ! Write the output values to a file. ! call r8mat_write ( output_file_name, m, output_n, input_table ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Wrote the merged data to "' & // trim ( output_file_name ) //'".' ! ! Free memory. ! deallocate ( input_table ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TABLE_MERGE' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine ch_cap ( c ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character C, the character to capitalize. ! implicit none character c integer ( kind = 4 ) itemp itemp = ichar ( c ) if ( 97 <= itemp .and. itemp <= 122 ) then c = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer ( kind = 4 ) DIGIT, the corresponding integer value. ! If C was 'illegal', then DIGIT is -1. ! implicit none character c integer ( kind = 4 ) digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_file_name, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the file. ! ! Output, integer ( kind = 4 ) COLUMN_NUM, the number of columns in the file. ! implicit none integer ( kind = 4 ) column_num logical got_one character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & form = 'formatted', access = 'sequential', iostat = input_status ) if ( input_status /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' & // trim ( input_file_name ) // '" on unit ', input_unit return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_name_ext_get ( file_name, i, j ) !*****************************************************************************80 ! !! FILE_NAME_EXT_GET determines the "extension" of a file name. ! ! Discussion: ! ! The "extension" of a filename is the string of characters ! that appears after the LAST period in the name. A file ! with no period, or with a period as the last character ! in the name, has a "null" extension. ! ! Blanks are unusual in filenames. This routine ignores all ! trailing blanks, but will treat initial or internal blanks ! as regular characters acceptable in a file name. ! ! Example: ! ! FILE_NAME I J ! ! bob.for 4 7 ! N.B.C.D 6 7 ! Naomi. 6 6 ! Arthur -1 -1 ! .com 1 1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 17 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) FILE_NAME, a file name to be examined. ! ! Output, integer ( kind = 4 ) I, J, the indices of the first and ! last characters in the file extension. ! ! If no period occurs in FILE_NAME, then ! I = J = -1; ! Otherwise, ! I is the position of the LAST period in FILE_NAME, and J is the ! position of the last nonblank character following the period. ! implicit none character ( len = * ) file_name integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) s_index_last_c i = s_index_last_c ( file_name, '.' ) if ( i == -1 ) then j = -1 else j = len_trim ( file_name ) end if return end subroutine file_name_ext_swap ( file_name, ext ) !*****************************************************************************80 ! !! FILE_NAME_EXT_SWAP replaces the current "extension" of a file name. ! ! Discussion: ! ! The "extension" of a filename is the string of characters ! that appears after the LAST period in the name. A file ! with no period, or with a period as the last character ! in the name, has a "null" extension. ! ! Example: ! ! Input Output ! ================ ========= ! FILE_NAME EXT FILE_NAME ! ! bob.for obj bob.obj ! bob.bob.bob txt bob.bob.txt ! bob yak bob.yak ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character ( len = * ) FILE_NAME, a file name. ! On output, the extension of the file has been changed. ! ! Input, character ( len = * ) EXT, the extension to be used on the output ! copy of FILE_NAME, replacing the current extension if any. ! implicit none character ( len = * ) ext character ( len = * ) file_name integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) len_max integer ( kind = 4 ) len_name len_max = len ( file_name ) len_name = len_trim ( file_name ) call file_name_ext_get ( file_name, i, j ) if ( i == -1 ) then if ( len_max < len_name + 1 ) then return end if len_name = len_name + 1 file_name(len_name:len_name) = '.' i = len_name + 1 else i = i + 1 file_name(i:j) = ' ' end if file_name(i:) = ext return end subroutine file_row_count ( input_file_name, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the input file. ! ! Output, integer ( kind = 4 ) ROW_NUM, the number of rows found. ! implicit none integer ( kind = 4 ) bad_num integer ( kind = 4 ) comment_num integer ( kind = 4 ) ierror character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit character ( len = 255 ) line integer ( kind = 4 ) record_num integer ( kind = 4 ) row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_file_name ) // '" on unit ', input_unit stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer ( kind = 4 ) IUNIT, the free unit number. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) ios integer ( kind = 4 ) iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine i4_swap ( i, j ) !*****************************************************************************80 ! !! I4_SWAP switches two integer values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 November 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, integer ( kind = 4 ) I, J. On output, the values of I and ! J have been interchanged. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k k = i i = j j = k return end subroutine i4vec_heap_d ( n, a ) !*****************************************************************************80 ! !! I4VEC_HEAP_D reorders an array of integers into a descending heap. ! ! Discussion: ! ! A descending heap is an array A with the property that, for every index J, ! A(2*J) <= A(J) and A(2*J+1) <= A(J), (as long as the indices ! 2*J and 2*J+1 are legal). ! ! Diagram: ! ! A(1) ! / \ ! A(2) A(3) ! / \ / \ ! A(4) A(5) A(6) A(7) ! / \ / \ ! A(8) A(9) A(10) A(11) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 April 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Albert Nijenhuis and Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the size of the input array. ! ! Input/output, integer ( kind = 4 ) A(N). ! On input, an unsorted array. ! On output, the array has been reordered into a heap. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) i integer ( kind = 4 ) ifree integer ( kind = 4 ) key integer ( kind = 4 ) m ! ! Only nodes N/2 down to 1 can be "parent" nodes. ! do i = n/2, 1, -1 ! ! Copy the value out of the parent node. ! Position IFREE is now "open". ! key = a(i) ifree = i do ! ! Positions 2*IFREE and 2*IFREE + 1 are the descendants of position ! IFREE. (One or both may not exist because they exceed N.) ! m = 2 * ifree ! ! Does the first position exist? ! if ( n < m ) then exit end if ! ! Does the second position exist? ! if ( m + 1 <= n ) then ! ! If both positions exist, take the larger of the two values, ! and update M if necessary. ! if ( a(m) < a(m+1) ) then m = m + 1 end if end if ! ! If the large descendant is larger than KEY, move it up, ! and update IFREE, the location of the free position, and ! consider the descendants of THIS position. ! if ( a(m) <= key ) then exit end if a(ifree) = a(m) ifree = m end do ! ! Once there is no more shifting to do, KEY moves into the free spot IFREE. ! a(ifree) = key end do return end subroutine i4vec_sort_heap_a ( n, a ) !*****************************************************************************80 ! !! I4VEC_SORT_HEAP_A ascending sorts an integer array using heap sort. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 April 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Albert Nijenhuis and Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries in the array. ! ! Input/output, integer ( kind = 4 ) A(N). ! On input, the array to be sorted; ! On output, the array has been sorted. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) n1 if ( n <= 1 ) then return end if ! ! 1: Put A into descending heap form. ! call i4vec_heap_d ( n, a ) ! ! 2: Sort A. ! ! The largest object in the heap is in A(1). ! Move it to position A(N). ! call i4_swap ( a(1), a(n) ) ! ! Consider the diminished heap of size N1. ! do n1 = n-1, 2, -1 ! ! Restore the heap structure of A(1) through A(N1). ! call i4vec_heap_d ( n1, a ) ! ! Take the largest object from A(1) and move it to A(N1). ! call i4_swap ( a(1), a(n1) ) end do return end subroutine node_cluster_epsilon ( dim_num, node_num, node_coord, & tolerance, cluster_num ) !*****************************************************************************80 ! !! NODE_CLUSTER_EPSILON clusters points with a tolerance. ! ! Discussion: ! ! Initially, each point is in its own cluster. If two clusters ! are separated by a distance of less than the tolerance, then ! they are replaced by one cluster, whose representative point ! is the weighted sum of the two cluster representatives. ! ! The clusters are repeatedly processed until all clusters are ! separated by a distance of at least the tolerance. ! ! This algorithm may be useful when a dataset containing a number ! of points is given, and ! ! 1) duplicate points must be removed (in this case, a value of ! TOLERANCE = 0 will work) ! OR ! 2) points that are very close to each other should be discarded. ! In this case, a "small" value of TOLERANCE is appropriate. ! ! Note that this procedure depends on the ordering of the points. ! If you have three points A < B < C separated by slightly ! less than the tolerance, then A and B will be merged or B and C ! will be merged, depending on the labels of the nodes. Thus ! this process is not a strictly geometric procedure. ! ! Secondly, it should be obvious that the procedure may return ! points that were not input points, because of the use of centroids. ! ! Third, this procedure does guarantee that the output points are ! separated by more than TOLERANCE units of distance. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 17 February 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) DIM_NUM, the spatial dimension. ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input/output, real NODE_COORD(DIM_NUM,NODE_NUM). ! On input, NODE_COORD contains the node coordinates. ! On output, NODE_COORD(1:DIM_NUM,1:CLUSTER_NUM) contains ! the coordinates of the cluster representatives. ! ! Input, real ( kind = 8 ) TOLERANCE, the distance tolerance. ! ! Output, integer ( kind = 4 ) CLUSTER_NUM, the number of clusters. ! implicit none integer ( kind = 4 ) dim_num integer ( kind = 4 ) node_num integer ( kind = 4 ) cluster_num integer ( kind = 4 ) cluster1 integer ( kind = 4 ) cluster2 logical found integer ( kind = 4 ) node real ( kind = 8 ) node_coord(dim_num,node_num) real ( kind = 8 ) tolerance real ( kind = 8 ) weight(node_num) weight(1:node_num) = 1.0D+00 do found = .false. do cluster1 = 1, node_num if ( weight(cluster1) == 0.0D+00 ) then cycle end if do cluster2 = 1, cluster1 - 1 if ( weight(cluster2) == 0.0D+00 ) then cycle end if if ( sqrt ( sum ( & ( node_coord(1:dim_num,cluster1) & - node_coord(1:dim_num,cluster2) )**2 ) ) <= tolerance ) then found = .true. node_coord(1:dim_num,cluster2) = & ( weight(cluster1) * node_coord(1:dim_num,cluster1) & + weight(cluster2) * node_coord(1:dim_num,cluster2) ) / & ( weight(cluster1) + weight(cluster2) ) weight(cluster2) = weight(cluster1) + weight(cluster2) weight(cluster1) = 0.0D+00 end if end do end do if ( .not. found ) then exit end if end do cluster_num = 0 do node = 1, node_num if ( 0.0D+00 < weight(node) ) then cluster_num = cluster_num + 1 node_coord(1:dim_num,cluster_num) = node_coord(1:dim_num,node) end if end do return end subroutine node_merge ( dim_num, node_num, node_xy, tolerance, node_rep ) !*****************************************************************************80 ! !! NODE_MERGE detects nodes that should be merged. ! ! Discussion: ! ! Two nodes "should" be merged if they are within TOLERANCE distance ! of each other. ! ! With a tolerance of 0, only exactly equal nodes are counted. ! ! With a positive tolerance, a pair of nodes inside a circle of ! radius TOLERANCE result in a count of 1 duplicate. ! ! However, what do we do if nodes A, B and C are arranged in a line,! ! with A and B just within TOLERANCE of each other, and B and C just ! within tolerance of each other? What we do here is make a choice ! that can be defended consistently. A and B define an equivalence ! class because they are closer than TOLERANCE. C is then added to ! this equivalence class, because it is within TOLERANCE of at least ! on thing in that equivalence class. ! ! Thus, if 100 nodes are separated pairwise by slightly less ! than TOLERANCE, a total of 99 duplicates will be counted. ! ! The program starts out by giving each node its own label. ! If it finds that two nodes should be merged, then the index of ! one node is used as the label for both. This process continues ! until all nodes have been considered. The number of unique nodes ! is the number of unique values in the output quantity NODE_REP. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 February 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) DIM_NUM, the spatial dimension. ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, real ( kind = 8 ) NODE_XY(DIM_NUM,NODE_NUM), the nodes. ! ! Input, real ( kind = 8 ) TOLERANCE, the maximum distance between ! two nodes regarded as duplicate. ! ! Output, integer ( kind = 4 ) NODE_REP(NODE_NUM), the "representative" of ! each node. NODE_REP(NODE) is the index of a node which is within ! TOLERANCE of node NODE, or for which a chain of nodes can be found, all ! having the same representative, and all of which are pairwise closer than ! TOLERANCE. ! implicit none integer ( kind = 4 ) dim_num integer ( kind = 4 ) node_num real ( kind = 8 ) dist integer ( kind = 4 ) node_rep(node_num) real ( kind = 8 ) node_xy(dim_num,node_num) integer ( kind = 4 ) node1 integer ( kind = 4 ) node2 integer ( kind = 4 ) rep real ( kind = 8 ) rep_dist(node_num) real ( kind = 8 ) tolerance do node1 = 1, node_num node_rep(node1) = node1 end do do node1 = 1, node_num rep_dist(1:node_num) = huge ( 1.0D+00 ) do node2 = 1, node_num dist = sqrt ( sum ( & ( node_xy(1:dim_num,node1) - node_xy(1:dim_num,node2) )**2 ) ) rep = node_rep(node2) if ( dist < rep_dist(rep) ) then rep_dist(rep) = dist end if end do do node2 = 1, node_num rep = node_rep(node2) if ( rep_dist(rep) <= tolerance ) then node_rep(node2) = node1 end if end do end do return end subroutine r8mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Output, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) ierror character ( len = * ) input_filename integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit integer ( kind = 4 ) j character ( len = 255 ) line real ( kind = 8 ) table(m,n) real ( kind = 8 ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ( kind = 4 ) M, spatial dimension. ! ! Output, integer ( kind = 4 ) N, the number of points. ! implicit none character ( len = * ) input_filename integer ( kind = 4 ) m integer ( kind = 4 ) n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine r8mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2 integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)') i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Input, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) j character ( len = * ) output_filename integer ( kind = 4 ) output_status integer ( kind = 4 ) output_unit character ( len = 30 ) string real ( kind = 8 ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! ! For less precision in the output file, try: ! ! '(', m, 'g', 14, '.', 6, ')' ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 24, '.', 16, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine s_blank_delete ( s ) !*****************************************************************************80 ! !! S_BLANK_DELETE removes blanks from a string, left justifying the remainder. ! ! Discussion: ! ! All TAB characters are also removed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character ( len = * ) S, the string to be transformed. ! implicit none character c integer ( kind = 4 ) get integer ( kind = 4 ) put integer ( kind = 4 ) nchar character ( len = * ) s character, parameter :: TAB = char ( 9 ) put = 0 nchar = len_trim ( s ) do get = 1, nchar c = s(get:get) if ( c /= ' ' .and. c /= TAB ) then put = put + 1 s(put:put) = c end if end do s(put+1:nchar) = ' ' return end function s_index_last_c ( s, c ) !*****************************************************************************80 ! !! S_INDEX_LAST_C finds the LAST occurrence of a given character. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 December 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be searched. ! ! Input, character C, the character to search for. ! ! Output, integer ( kind = 4 ) S_INDEX_LAST_C, the index in S where C occurs ! last, or -1 if it does not occur. ! implicit none character c integer ( kind = 4 ) i character ( len = * ) s integer ( kind = 4 ) s_len integer ( kind = 4 ) s_index_last_c if ( c == ' ' ) then s_len = len ( s ) else s_len = len_trim ( s ) end if do i = s_len, 1, -1 if ( s(i:i) == c ) then s_index_last_c = i return end if end do s_index_last_c = -1 return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = 8 ) DVAL, the value read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer ( kind = 4 ) LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none logical ch_eqi character c real ( kind = 8 ) dval integer ( kind = 4 ) ierror integer ( kind = 4 ) ihave integer ( kind = 4 ) isgn integer ( kind = 4 ) iterm integer ( kind = 4 ) jbot integer ( kind = 4 ) jsgn integer ( kind = 4 ) jtop integer ( kind = 4 ) length integer ( kind = 4 ) nchar integer ( kind = 4 ) ndig real ( kind = 8 ) rbot real ( kind = 8 ) rexp real ( kind = 8 ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length+1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = 8 ) & / real ( jbot, kind = 8 ) ) end if end if dval = real ( isgn, kind = 8 ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer ( kind = 4 ) N, the number of values expected. ! ! Output, real ( kind = 8 ) RVEC(N), the values read from the string. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) ilo integer ( kind = 4 ) lchar real ( kind = 8 ) rvec(n) character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer ( kind = 4 ) NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none logical blank integer ( kind = 4 ) i integer ( kind = 4 ) lens integer ( kind = 4 ) nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end