program main !*****************************************************************************80 ! !! MAIN is the main program for SGMGA_INDEX_TEST. ! ! Discussion: ! ! SGMGA_INDEX_TEST tests the SGMGA library. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 27 November 2009 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SGMGA_INDEX_TEST:' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test the SGMGA_INDEX function.' call sgmga_index_tests ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SGMGA_INDEX_TEST:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine sgmga_index_tests ( ) !****************************************************************************80 ! !! SGMGA_INDEX_TESTS calls SGMGA_INDEX_TEST with various arguments. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 20 June 2010 ! ! Author: ! ! John Burkardt ! ! Local Parameters: ! ! Local, real ( kind = 8 ) TOL, a tolerance for point equality. ! A value of sqrt ( eps ) is reasonable, and will allow the code to ! consolidate points which are equal, or very nearly so. A value of ! -1.0, on the other hand, will force the code to use every point, regardless ! of duplication. ! implicit none integer ( kind = 4 ) dim integer ( kind = 4 ) dim_num integer ( kind = 4 ), allocatable :: growth(:) real ( kind = 8 ), allocatable :: importance(:) integer ( kind = 4 ) level_max_max integer ( kind = 4 ) level_max_min real ( kind = 8 ), allocatable :: level_weight(:) integer ( kind = 4 ), allocatable :: np(:) integer ( kind = 4 ) np_sum integer ( kind = 4 ), allocatable :: order_1d(:) integer ( kind = 4 ) order_nd real ( kind = 8 ), allocatable :: p(:) real ( kind = 8 ) r8_epsilon integer ( kind = 4 ), allocatable :: rule(:) real ( kind = 8 ) tol write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SGMGA_INDEX_TESTS' write ( *, '(a)' ) ' Call SGMGA_INDEX_TEST with various arguments.' ! ! Set the point equality tolerance. ! tol = sqrt ( r8_epsilon ( ) ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' All tests will use a point equality tolerance of ', tol dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = 1.0D+00 end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 1 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 6 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 5 allocate ( rule(1:dim_num) ) rule = (/ 1, 1 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 6 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 3 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = 1.0D+00 end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 1, 1 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 6, 6 /) allocate ( np(1:dim_num) ) np = (/ 0, 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 3 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 1, 1 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 6, 6 /) allocate ( np(1:dim_num) ) np = (/ 0, 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 3 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 6 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 4 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 3 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 7 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 3 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 8 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 3 /) allocate ( np(1:dim_num) ) np = (/ 0, 1 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) p(1) = 1.5D+00 call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 2, 9 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 3 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) p(1) = 0.5D+00 p(2) = 1.5D+00 call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 2 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 6, 10 /) allocate ( growth(1:dim_num) ) growth = (/ 3, 4 /) allocate ( np(1:dim_num) ) np = (/ 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) p(1) = 2.0D+00 call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) dim_num = 3 allocate ( importance(1:dim_num) ) do dim = 1, dim_num importance(dim) = real ( dim, kind = 8 ) end do allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 2 allocate ( rule(1:dim_num) ) rule = (/ 1, 4, 5 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 3, 3 /) allocate ( np(1:dim_num) ) np = (/ 0, 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) ! ! Try a problem in which one dimension has "zero" importance. ! dim_num = 3 allocate ( importance(1:dim_num) ) importance(1:dim_num) = (/ 1.0D+00, 0.0D+00, 1.0D+00 /) allocate ( level_weight(1:dim_num) ) call sgmga_importance_to_aniso ( dim_num, importance, level_weight ) level_max_min = 0 level_max_max = 3 allocate ( rule(1:dim_num) ) rule = (/ 1, 1, 1 /) allocate ( growth(1:dim_num) ) growth = (/ 6, 6, 6 /) allocate ( np(1:dim_num) ) np = (/ 0, 0, 0 /) np_sum = sum ( np(1:dim_num) ) allocate ( p(1:np_sum) ) call sgmga_index_test ( dim_num, importance, level_weight, level_max_min, & level_max_max, rule, growth, np, p, tol ) deallocate ( growth ) deallocate ( importance ) deallocate ( level_weight ) deallocate ( np ) deallocate ( p ) deallocate ( rule ) return end subroutine sgmga_index_test ( dim_num, importance, level_weight, & level_max_min, level_max_max, rule, growth, np, p, tol ) !****************************************************************************80 ! !! SGMGA_INDEX_TEST tests SGMGA_INDEX. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 March 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) DIM_NUM, the spatial dimension. ! ! Input, real ( kind = 8 ) IMPORTANCE(DIM_NUM), the anisotropic "importance" ! for each dimension. ! ! Input, real ( kind = 8 ) LEVEL_WEIGHT(DIM_NUM), the anisotropic weight ! for each dimension. ! ! Input, integer ( kind = 4 ) LEVEL_MAX_MIN, LEVEL_MAX_MAX, the minimum and ! maximum values of LEVEL_MAX. ! ! Input, integer ( kind = 4 ) RULE(DIM_NUM), the rule in each dimension. ! 1, "CC", Clenshaw Curtis, Closed Fully Nested. ! 2, "F2", Fejer Type 2, Open Fully Nested. ! 3, "GP", Gauss Patterson, Open Fully Nested. ! 4, "GL", Gauss Legendre, Open Weakly Nested. ! 5, "GH", Gauss Hermite, Open Weakly Nested. ! 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested. ! 7, "LG", Gauss Laguerre, Open Non Nested. ! 8, "GLG", Generalized Gauss Laguerre, Open Non Nested. ! 9, "GJ", Gauss Jacobi, Open Non Nested. ! 10, "HGK", Hermite Genz-Keister, Open Fully Nested. ! 11, "UO", User supplied Open, presumably Non Nested. ! 12, "UC", User supplied Closed, presumably Non Nested. ! ! Input, integer ( kind = 4 ) GROWTH(DIM_NUM), the desired growth in each dimension. ! 0, "DF", default growth associated with this quadrature rule; ! 1, "SL", slow linear, L+1; ! 2 "SO", slow linear odd, O=1+2((L+1)/2) ! 3, "ML", moderate linear, 2L+1; ! 4, "SE", slow exponential; ! 5, "ME", moderate exponential; ! 6, "FE", full exponential. ! ! Input, integer ( kind = 4 ) NP(DIM_NUM), the number of parameters used ! by each rule. ! ! Input, real ( kind = 8 ) P(*), the parameters needed by each rule. ! ! Input, real ( kind = 8 ) TOL, a tolerance for point equality. ! implicit none integer ( kind = 4 ) dim_num integer ( kind = 4 ) dim integer ( kind = 4 ) growth(dim_num) real ( kind = 8 ) importance(dim_num) integer ( kind = 4 ) level_max integer ( kind = 4 ) level_max_max integer ( kind = 4 ) level_max_min real ( kind = 8 ) level_weight(dim_num) integer ( kind = 4 ) np(dim_num) real ( kind = 8 ) p(*) integer ( kind = 8 ) p_index integer ( kind = 4 ) point integer ( kind = 4 ) point_num integer ( kind = 4 ) point_total_num integer ( kind = 4 ) rule(dim_num) integer ( kind = 4 ), allocatable, dimension ( :, : ) :: sparse_index integer ( kind = 4 ), allocatable, dimension ( :, : ) :: sparse_order integer ( kind = 4 ), allocatable, dimension ( : ) :: sparse_unique_index real ( kind = 8 ) tol write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SGMGA_INDEX_TEST' write ( *, '(a)' ) ' SGMGA_INDEX returns index and order vectors that' write ( *, '(a)' ) ' identify each point in a multidimensional sparse grid with mixed factors.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Each sparse grid is of spatial dimension DIM_NUM,' write ( *, '(a)' ) ' and is made up of product grids of levels up to LEVEL_MAX.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' IMPORTANCE:' write ( *, '(5g14.6)' ) importance(1:dim_num) write ( *, '(a)' ) ' LEVEL_WEIGHT:' write ( *, '(5g14.6)' ) level_weight(1:dim_num) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Dimension Rule Growth Parameters' write ( *, '(a)' ) ' ' p_index = 1 do dim = 1, dim_num if ( rule(dim) == 1 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 2 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 3 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 4 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 5 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 6 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim), p(p_index) else if ( rule(dim) == 7 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 8 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim), p(p_index) else if ( rule(dim) == 9 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim), p(p_index), p(p_index+1) else if ( rule(dim) == 10 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 11 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) else if ( rule(dim) == 12 ) then write ( *, '(2x,i8,2x,i8,2x,i11,2x,g14.6,2x,g14.6)' ) & dim, rule(dim), growth(dim) end if p_index = p_index + np(dim) end do do level_max = level_max_min, level_max_max call sgmga_size_total ( dim_num, level_weight, level_max, rule, growth, & point_total_num ) call sgmga_size ( dim_num, level_weight, level_max, rule, growth, np, p, & tol, point_num ) allocate ( sparse_unique_index(1:point_total_num) ) call sgmga_unique_index ( dim_num, level_weight, level_max, rule, growth, np, & p, tol, point_num, point_total_num, sparse_unique_index ) allocate ( sparse_index(1:dim_num,1:point_num) ) allocate ( sparse_order(1:dim_num,1:point_num) ) call sgmga_index ( dim_num, level_weight, level_max, rule, growth, point_num, & point_total_num, sparse_unique_index, sparse_order, sparse_index ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' For LEVEL_MAX = ', level_max write ( *, '(a)' ) ' ' do point = 1, point_num write ( *, '(2x,i4,2x,10(2x,i3, a2, i3 ))' ) & point, ( sparse_index(dim,point), ' /', & sparse_order(dim,point), dim = 1, dim_num ) end do deallocate ( sparse_index ) deallocate ( sparse_order ) deallocate ( sparse_unique_index ) end do return end