function adj_bandwidth ( node_num, adj_num, adj_row, adj ) !*****************************************************************************80 ! !! ADJ_BANDWIDTH computes the bandwidth of an adjacency matrix. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 March 2005 ! ! Author: ! ! John Burkardt ! ! Author: ! ! Original FORTRAN77 version by Alan George, Joseph Liu. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Output, integer ( kind = 4 ) ADJ_BANDWIDTH, the bandwidth of the adjacency ! matrix. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_bandwidth integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) band_hi integer ( kind = 4 ) band_lo integer ( kind = 4 ) col integer ( kind = 4 ) i integer ( kind = 4 ) j band_lo = 0 band_hi = 0 do i = 1, node_num do j = adj_row(i), adj_row(i+1) - 1 col = adj(j) band_lo = max ( band_lo, i - col ) band_hi = max ( band_hi, col - i ) end do end do adj_bandwidth = band_lo + 1 + band_hi return end function adj_contains_ij ( node_num, adj_num, adj_row, adj, i, j ) !*****************************************************************************80 ! !! ADJ_CONTAINS_IJ determines if (I,J) is in an adjacency structure. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 23 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! ! Input, integer ( kind = 4 ) I, J, the two nodes, for which we want to know ! whether I is adjacent to J. ! ! Output, logical ADJ_CONTAINS_IJ, is TRUE if I = J, or the adjacency ! structure contains the information that I is adjacent to J. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) logical adj_contains_ij integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) khi integer ( kind = 4 ) klo ! ! Symmetric entries are not stored. ! if ( i == j ) then adj_contains_ij = .true. return end if ! ! Illegal I, J entries. ! if ( node_num < i ) then adj_contains_ij = .false. return else if ( i < 1 ) then adj_contains_ij = .false. return else if ( node_num < j ) then adj_contains_ij = .false. return else if ( j < 1 ) then adj_contains_ij = .false. return end if ! ! Search the adjacency entries already stored for row I, ! to see if J has already been stored. ! klo = adj_row(i) khi = adj_row(i+1)-1 do k = klo, khi if ( adj(k) == j ) then adj_contains_ij = .true. return end if end do adj_contains_ij = .false. return end subroutine adj_insert_ij ( node_num, adj_max, adj_num, adj_row, adj, i, j ) !*****************************************************************************80 ! !! ADJ_INSERT_IJ inserts (I,J) into an adjacency structure. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_MAX, the maximum number of adjacency ! entries. ! ! Input/output, integer ( kind = 4 ) ADJ_NUM, the number of adjacency ! entries. ! ! Input/output, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input/output, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! ! Input, integer ( kind = 4 ) I, J, the two nodes which are adjacent. ! implicit none integer ( kind = 4 ) adj_max integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_max) integer ( kind = 4 ) adj_num integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) j_spot integer ( kind = 4 ) k ! ! A new adjacency entry must be made. ! Check that we're not exceeding the storage allocation for ADJ. ! if ( adj_max < adj_num + 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_INSERT_IJ - Fatal error!' write ( *, '(a)' ) ' All available storage has been used.' write ( *, '(a)' ) ' No more information can be stored!' write ( *, '(a)' ) ' This error occurred for ' write ( *, '(a,i8)' ) ' Row I = ', i write ( *, '(a,i8)' ) ' Column J = ', j stop 1 end if ! ! The action is going to occur between ADJ_ROW(I) and ADJ_ROW(I+1)-1: ! j_spot = adj_row(i) do k = adj_row(i), adj_row(i+1) - 1 if ( adj(k) == j ) then return else if ( adj(k) < j ) then j_spot = k + 1 else exit end if end do adj(j_spot+1:adj_num+1) = adj(j_spot:adj_num) adj(j_spot) = j adj_row(i+1:node_num+1) = adj_row(i+1:node_num+1) + 1 adj_num = adj_num + 1 return end function adj_perm_bandwidth ( node_num, adj_num, adj_row, adj, perm, perm_inv ) !*****************************************************************************80 ! !! ADJ_PERM_BANDWIDTH computes the bandwidth of a permuted adjacency matrix. ! ! Discussion: ! ! The matrix is defined by the adjacency information and a permutation. ! ! The routine also computes the bandwidth and the size of the envelope. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 March 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Input, integer ( kind = 4 ) PERM(NODE_NUM), PERM_INV(NODE_NUM), the ! permutation and inverse permutation. ! ! Output, integer ( kind = 4 ) ADJ_PERM_BANDWIDTH, the bandwidth of the ! permuted adjacency matrix. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_perm_bandwidth integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) band_hi integer ( kind = 4 ) band_lo integer ( kind = 4 ) col integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) perm(node_num) integer ( kind = 4 ) perm_inv(node_num) band_lo = 0 band_hi = 0 do i = 1, node_num do j = adj_row(perm(i)), adj_row(perm(i)+1) - 1 col = perm_inv(adj(j)) band_lo = max ( band_lo, i - col ) band_hi = max ( band_hi, col - i ) end do end do adj_perm_bandwidth = band_lo + 1 + band_hi return end subroutine adj_perm_show ( node_num, adj_num, adj_row, adj, perm, perm_inv ) !*****************************************************************************80 ! !! ADJ_PERM_SHOW displays a symbolic picture of a permuted adjacency matrix. ! ! Discussion: ! ! The matrix is defined by the adjacency information and a permutation. ! ! The routine also computes the bandwidth and the size of the envelope. ! ! If no permutation has been done, you must set PERM(I) = PERM_INV(I) = I ! before calling this routine. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 October 2003 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Input, integer ( kind = 4 ) PERM(NODE_NUM), PERM_INV(NODE_NUM), the ! permutation and inverse permutation. ! implicit none integer ( kind = 4 ), parameter :: n_max = 100 integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) character band(n_max) integer ( kind = 4 ) band_lo integer ( kind = 4 ) col integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) nonzero_num integer ( kind = 4 ) perm(node_num) integer ( kind = 4 ) perm_inv(node_num) band_lo = 0 nonzero_num = 0 if ( n_max < node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_PERM_SHOW - Fatal error!' write ( *, '(a)' ) ' NODE_NUM is too large!' write ( *, '(a,i8)' ) ' Maximum legal value is ', n_max write ( *, '(a,i8)' ) ' Your input value was ', node_num stop 1 end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Nonzero structure of matrix:' write ( *, '(a)' ) ' ' do i = 1, node_num do k = 1, node_num band(k) = '.' end do band(i) = 'D' do j = adj_row(perm(i)), adj_row(perm(i)+1) - 1 col = perm_inv(adj(j)) if ( col < i ) then nonzero_num = nonzero_num + 1 end if band_lo = max ( band_lo, i - col ) if ( col /= i ) then band(col) = 'X' end if end do write ( *, '(2x,i8,1x,100a1)' ) i, band(1:node_num) end do write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Lower bandwidth = ', band_lo write ( *, '(a,i8,a)' ) ' Lower envelope contains ', & nonzero_num, ' nonzeros.' return end subroutine adj_print ( node_num, adj_num, adj_row, adj, title ) !*****************************************************************************80 ! !! ADJ_PRINT prints adjacency information. ! ! Discussion: ! ! The list has the form: ! ! Row Nonzeros ! ! 1 2 5 9 ! 2 7 8 9 15 78 79 81 86 91 99 ! 100 103 ! 3 48 49 53 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 December 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1), organizes the adjacency ! entries into rows. The entries for row I are in entries ADJ_ROW(I) ! through ADJ_ROW(I+1)-1. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure, which ! contains, for each row, the column indices of the nonzero entries. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) character ( len = * ) title call adj_print_some ( node_num, 1, node_num, adj_num, adj_row, adj, title ) return end subroutine adj_print_some ( node_num, node_lo, node_hi, adj_num, adj_row, & adj, title ) !*****************************************************************************80 ! !! ADJ_PRINT_SOME prints some adjacency information. ! ! Discussion: ! ! The list has the form: ! ! Row Nonzeros ! ! 1 2 5 9 ! 2 7 8 9 15 78 79 81 86 91 99 ! 100 103 ! 3 48 49 53 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 December 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) NODE_LO, NODE_HI, the first and last nodes for ! which the adjacency information is to be printed. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1), organizes the adjacency ! entries into rows. The entries for row I are in entries ADJ_ROW(I) ! through ADJ_ROW(I+1)-1. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure, which ! contains, for each row, the column indices of the nonzero entries. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo integer ( kind = 4 ) jmax integer ( kind = 4 ) jmin integer ( kind = 4 ) node_hi integer ( kind = 4 ) node_lo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Sparse adjacency structure:' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Number of nodes = ', node_num write ( *, '(a,i8)' ) ' Number of adjacencies = ', adj_num write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Node Min Max Nonzeros ' write ( *, '(a)' ) ' ' do i = node_lo, node_hi jmin = adj_row(i) jmax = adj_row(i+1) - 1 if ( jmax < jmin ) then write ( *, '(2x,3i4)' ) i, jmin, jmax else do jlo = jmin, jmax, 5 jhi = min ( jlo + 4, jmax ) if ( jlo == jmin ) then write ( *, '(2x,3i4,3x,5i8)' ) i, jmin, jmax, adj(jlo:jhi) else write ( *, '(2x,12x,3x,5i8)' ) adj(jlo:jhi) end if end do end if end do return end subroutine adj_set ( node_num, adj_max, adj_num, adj_row, adj, irow, jcol ) !*****************************************************************************80 ! !! ADJ_SET sets up the adjacency information. ! ! Discussion: ! ! The routine records the locations of each nonzero element, ! one at a time. ! ! The first call for a given problem should be with IROW or ICOL ! negative. This is a signal indicating the data structure should ! be initialized. ! ! Then, for each case in which A(IROW,JCOL) is nonzero, or ! in which IROW is adjacent to JCOL, call this routine once ! to record that fact. ! ! Diagonal entries are not to be stored. ! ! The matrix is assumed to be symmetric, so setting I adjacent to J ! will also set J adjacent to I. ! ! Repeated calls with the same values of IROW and JCOL do not ! actually hurt. No extra storage will be allocated. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 23 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_MAX, the maximum dimension of the ! adjacency array. ! ! Input/output, integer ( kind = 4 ) ADJ_NUM, the number of adjaceny entries. ! ! Input/output, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input/output, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! ! Input, integer ( kind = 4 ) IROW, JCOL, the row and column indices of a ! nonzero entry of the matrix. ! implicit none integer ( kind = 4 ) adj_max integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_max) logical adj_contains_ij integer ( kind = 4 ) adj_num integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) irow integer ( kind = 4 ) jcol ! ! Negative IROW or JCOL indicates the data structure should be initialized. ! if ( irow < 0 .or. jcol < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_SET - Note:' write ( *, '(a)') ' Initializing adjacency information.' write ( *, '(a,i8)' ) ' Number of nodes NODE_NUM = ', node_num write ( *, '(a,i8)' ) ' Maximum adjacency ADJ_MAX = ', adj_max adj_num = 0 adj_row(1:node_num+1) = 1 adj(1:adj_max) = 0 return end if ! ! Diagonal entries are not stored. ! if ( irow == jcol ) then return end if if ( node_num < irow ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_SET - Fatal error!' write ( *, '(a)' ) ' NODE_NUM < IROW.' write ( *, '(a,i8)' ) ' IROW = ', irow write ( *, '(a,i8)' ) ' NODE_NUM = ', node_num stop 1 else if ( irow < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_SET - Fatal error!' write ( *, '(a)' ) ' IROW < 1.' write ( *, '(a,i8)' ) ' IROW = ', irow stop 1 else if ( node_num < jcol ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_SET - Fatal error!' write ( *, '(a)' ) ' NODE_NUM < JCOL.' write ( *, '(a,i8)' ) ' JCOL = ', jcol write ( *, '(a,i8)' ) ' NODE_NUM = ', node_num stop 1 else if ( jcol < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_SET - Fatal error!' write ( *, '(a)' ) ' JCOL < 1.' write ( *, '(a,i8)' ) ' JCOL = ', jcol stop 1 end if if ( .not. & adj_contains_ij ( node_num, adj_num, adj_row, adj, irow, jcol ) ) then call adj_insert_ij ( node_num, adj_max, adj_num, adj_row, adj, irow, jcol ) end if if ( .not. & adj_contains_ij ( node_num, adj_num, adj_row, adj, jcol, irow ) ) then call adj_insert_ij ( node_num, adj_max, adj_num, adj_row, adj, jcol, irow ) end if return end subroutine adj_show ( node_num, adj_num, adj_row, adj ) !*****************************************************************************80 ! !! ADJ_SHOW displays a symbolic picture of an adjacency matrix. ! ! Discussion: ! ! The matrix is defined by the adjacency information and a permutation. ! ! The routine also computes the bandwidth and the size of the envelope. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 March 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! implicit none integer ( kind = 4 ), parameter :: n_max = 100 integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) character band(n_max) integer ( kind = 4 ) band_lo integer ( kind = 4 ) col integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) nonzero_num band_lo = 0 nonzero_num = 0 if ( n_max < node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ADJ_SHOW - Fatal error!' write ( *, '(a)' ) ' NODE_NUM is too large!' write ( *, '(a,i8)' ) ' Maximum legal value is ', n_max write ( *, '(a,i8)' ) ' Your input value was ', node_num stop 1 end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Nonzero structure of matrix:' write ( *, '(a)' ) ' ' do i = 1, node_num do k = 1, node_num band(k) = '.' end do band(i) = 'D' do j = adj_row(i), adj_row(i+1) - 1 col = adj(j) if ( col < i ) then nonzero_num = nonzero_num + 1 end if band_lo = max ( band_lo, i-col ) band(col) = 'X' end do write ( *, '(2x,i8,1x,100a1)' ) i, band(1:node_num) end do write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Lower bandwidth = ', band_lo write ( *, '(a,i8,a)' ) ' Lower envelope contains ', & nonzero_num, ' nonzeros.' return end subroutine degree ( root, adj_num, adj_row, adj, mask, deg, iccsze, ls, & node_num ) !*****************************************************************************80 ! !! DEGREE computes the degrees of the nodes in the connected component. ! ! Discussion: ! ! The connected component is specified by MASK and ROOT. ! Nodes for which MASK is zero are ignored. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 January 2003 ! ! Author: ! ! Original FORTRAN77 version by Alan George, Joseph Liu. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) ROOT, the node that defines the connected ! component. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Input, integer ( kind = 4 ) MASK(NODE_NUM), is nonzero for those nodes ! which are to be considered. ! ! Output, integer ( kind = 4 ) DEG(NODE_NUM), contains, for each node in ! the connected component, its degree. ! ! Output, integer ( kind = 4 ) ICCSIZE, the number of nodes in the ! connected component. ! ! Output, integer ( kind = 4 ) LS(NODE_NUM), stores in entries 1 through ! ICCSIZE the nodes in the connected component, starting with ROOT, and ! proceeding by levels. ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) deg(node_num) integer ( kind = 4 ) i integer ( kind = 4 ) iccsze integer ( kind = 4 ) ideg integer ( kind = 4 ) j integer ( kind = 4 ) jstop integer ( kind = 4 ) jstrt integer ( kind = 4 ) lbegin integer ( kind = 4 ) ls(node_num) integer ( kind = 4 ) lvlend integer ( kind = 4 ) lvsize integer ( kind = 4 ) mask(node_num) integer ( kind = 4 ) nbr integer ( kind = 4 ) node integer ( kind = 4 ) root ! ! The sign of ADJ_ROW(I) is used to indicate if node I has been considered. ! ls(1) = root adj_row(root) = -adj_row(root) lvlend = 0 iccsze = 1 ! ! LBEGIN is the pointer to the beginning of the current level, and ! LVLEND points to the end of this level. ! do lbegin = lvlend + 1 lvlend = iccsze ! ! Find the degrees of nodes in the current level, ! and at the same time, generate the next level. ! do i = lbegin, lvlend node = ls(i) jstrt = -adj_row(node) jstop = abs ( adj_row(node+1) ) - 1 ideg = 0 do j = jstrt, jstop nbr = adj(j) if ( mask(nbr) /= 0 ) then ideg = ideg + 1 if ( 0 <= adj_row(nbr) ) then adj_row(nbr) = -adj_row(nbr) iccsze = iccsze + 1 ls(iccsze) = nbr end if end if end do deg(node) = ideg end do ! ! Compute the current level width. ! lvsize = iccsze - lvlend ! ! If the current level width is nonzero, generate another level. ! if ( lvsize == 0 ) then exit end if end do ! ! Reset ADJ_ROW to its correct sign and return. ! do i = 1, iccsze node = ls(i) adj_row(node) = -adj_row(node) end do return end subroutine genrcm ( node_num, adj_num, adj_row, adj, perm ) !*****************************************************************************80 ! !! GENRCM finds the reverse Cuthill-Mckee ordering for a general graph. ! ! Discussion: ! ! For each connected component in the graph, the routine obtains ! an ordering by calling RCM. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 January 2003 ! ! Author: ! ! Original FORTRAN77 version by Alan George, Joseph Liu. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Output, integer ( kind = 4 ) PERM(NODE_NUM), the RCM ordering. ! ! Local Parameters: ! ! Local, integer LEVEL_ROW(NODE_NUM+1), the index vector for a level ! structure. The level structure is stored in the currently unused ! spaces in the permutation vector PERM. ! ! Local, integer MASK(NODE_NUM), marks variables that have been numbered. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) iccsze integer ( kind = 4 ) mask(node_num) integer ( kind = 4 ) level_num integer ( kind = 4 ) level_row(node_num+1) integer ( kind = 4 ) num integer ( kind = 4 ) perm(node_num) integer ( kind = 4 ) root mask(1:node_num) = 1 num = 1 do i = 1, node_num ! ! For each masked connected component... ! if ( mask(i) /= 0 ) then root = i ! ! Find a pseudo-peripheral node ROOT. The level structure found by ! ROOT_FIND is stored starting at PERM(NUM). ! call root_find ( root, adj_num, adj_row, adj, mask, level_num, & level_row, perm(num), node_num ) ! ! RCM orders the component using ROOT as the starting node. ! call rcm ( root, adj_num, adj_row, adj, mask, perm(num), iccsze, & node_num ) num = num + iccsze ! ! We can stop once every node is in one of the connected components. ! if ( node_num < num ) then return end if end if end do return end subroutine graph_01_adj ( node_num, adj_num, adj_row, adj ) !*****************************************************************************80 ! !! GRAPH_01_ADJ returns the adjacency vector for graph 1. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 22 October 2003 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacencies. ! ! Output, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1), node pointers into ADJ. ! ! Output, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency information. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) adj(1:adj_num) = (/ & 4, 6, & 3, 5, 7, 10, & 2, 4, 5, & 1, 3, 6, 9, & 2, 3, 7, & 1, 4, 7, 8, & 2, 5, 6, 8, & 6, 7, & 4, & 2 /) adj_row(1:node_num+1) = (/ 1, 3, 7, 10, 14, 17, 21, 25, 27, 28, 29 /) return end subroutine graph_01_size ( node_num, adj_num ) !*****************************************************************************80 ! !! GRAPH_01_ADJ_NUM returns the number of adjacencies for graph 1. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 22 October 2003 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Output, integer ( kind = 4 ) NODE_NUM, the number of items that can ! be adjacent. ! ! Output, integer ( kind = 4 ) ADJ_NUM, the number of adjacencies. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num node_num = 10 adj_num = 28 return end subroutine i4_swap ( i, j ) !*****************************************************************************80 ! !! I4_SWAP swaps two I4's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 November 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, integer ( kind = 4 ) I, J. On output, the values of I and ! J have been interchanged. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k k = i i = j j = k return end function i4_uniform_ab ( a, b, seed ) !*****************************************************************************80 ! !! I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. ! ! Discussion: ! ! An I4 is an integer ( kind = 4 ) value. ! ! The pseudorandom number will be scaled to be uniformly distributed ! between A and B. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 October 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Second Edition, ! Springer, 1987, ! ISBN: 0387964673, ! LC: QA76.9.C65.B73. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, December 1986, pages 362-376. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley, 1998, ! ISBN: 0471134031, ! LC: T57.62.H37. ! ! Peter Lewis, Allen Goodman, James Miller, ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, Number 2, 1969, pages 136-143. ! ! Parameters: ! ! Input, integer ( kind = 4 ) A, B, the limits of the interval. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, integer ( kind = 4 ) I4_UNIFORM_AB, a number between A and B. ! implicit none integer ( kind = 4 ) a integer ( kind = 4 ) b integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) i4_uniform_ab integer ( kind = 4 ) k real ( kind = 4 ) r integer ( kind = 4 ) seed integer ( kind = 4 ) value if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4_UNIFORM_AB - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r = real ( seed, kind = 4 ) * 4.656612875E-10 ! ! Scale R to lie between A-0.5 and B+0.5. ! r = ( 1.0E+00 - r ) * ( real ( min ( a, b ), kind = 4 ) - 0.5E+00 ) & + r * ( real ( max ( a, b ), kind = 4 ) + 0.5E+00 ) ! ! Use rounding to convert R to an integer between A and B. ! value = nint ( r, kind = 4 ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) i4_uniform_ab = value return end subroutine i4col_compare ( m, n, a, i, j, isgn ) !*****************************************************************************80 ! !! I4COL_COMPARE compares columns I and J of an I4COL. ! ! Example: ! ! Input: ! ! M = 3, N = 4, I = 2, J = 4 ! ! A = ( ! 1 2 3 4 ! 5 6 7 8 ! 9 10 11 12 ) ! ! Output: ! ! ISGN = -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an array of N columns of vectors ! of length M. ! ! Input, integer ( kind = 4 ) I, J, the columns to be compared. ! I and J must be between 1 and N. ! ! Output, integer ( kind = 4 ) ISGN, the results of the comparison: ! -1, column I < column J, ! 0, column I = column J, ! +1, column J < column I. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) i integer ( kind = 4 ) isgn integer ( kind = 4 ) j integer ( kind = 4 ) k ! ! Check. ! if ( i < 1 .or. n < i ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a)' ) ' Column index I is out of bounds.' stop 1 end if if ( j < 1 .or. n < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a)' ) ' Column index J is out of bounds.' stop 1 end if isgn = 0 if ( i == j ) then return end if k = 1 do while ( k <= m ) if ( a(k,i) < a(k,j) ) then isgn = -1 return else if ( a(k,j) < a(k,i) ) then isgn = +1 return end if k = k + 1 end do return end subroutine i4col_sort_a ( m, n, a ) !*****************************************************************************80 ! !! I4COL_SORT_A ascending sorts an I4COL. ! ! Discussion: ! ! In lexicographic order, the statement "X < Y", applied to two real ! vectors X and Y of length M, means that there is some index I, with ! 1 <= I <= M, with the property that ! ! X(J) = Y(J) for J < I, ! and ! X(I) < Y(I). ! ! In other words, the first time they differ, X is smaller. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 25 September 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of A, and the length of ! a vector of data. ! ! Input, integer ( kind = 4 ) N, the number of columns of A. ! ! Input/output, integer ( kind = 4 ) A(M,N). ! On input, the array of N columns of M-vectors. ! On output, the columns of A have been sorted in ascending ! lexicographic order. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) i integer ( kind = 4 ) indx integer ( kind = 4 ) isgn integer ( kind = 4 ) j if ( m <= 0 ) then return end if if ( n <= 1 ) then return end if ! ! Initialize. ! i = 0 indx = 0 isgn = 0 j = 0 ! ! Call the external heap sorter. ! do call sort_heap_external ( n, indx, i, j, isgn ) ! ! Interchange the I and J objects. ! if ( 0 < indx ) then call i4col_swap ( m, n, a, i, j ) ! ! Compare the I and J objects. ! else if ( indx < 0 ) then call i4col_compare ( m, n, a, i, j, isgn ) else if ( indx == 0 ) then exit end if end do return end subroutine i4col_swap ( m, n, a, i, j ) !*****************************************************************************80 ! !! I4COL_SWAP swaps columns I and J of an I4COL. ! ! Example: ! ! Input: ! ! M = 3, N = 4, I = 2, J = 4 ! ! A = ( ! 1 2 3 4 ! 5 6 7 8 ! 9 10 11 12 ) ! ! Output: ! ! A = ( ! 1 4 3 2 ! 5 8 7 6 ! 9 12 11 10 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 April 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns ! in the array. ! ! Input/output, integer ( kind = 4 ) A(M,N), an array of N columns ! of length M. ! ! Input, integer ( kind = 4 ) I, J, the columns to be swapped. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) col(m) integer ( kind = 4 ) i integer ( kind = 4 ) j if ( i < 1 .or. n < i .or. j < 1 .or. n < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_SWAP - Fatal error!' write ( *, '(a)' ) ' I or J is out of bounds.' write ( *, '(a,i8)' ) ' I = ', i write ( *, '(a,i8)' ) ' J = ', j write ( *, '(a,i8)' ) ' N = ', n stop 1 end if if ( i == j ) then return end if col(1:m) = a(1:m,i) a(1:m,i) = a(1:m,j) a(1:m,j) = col(1:m) return end subroutine i4mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_PRINT_SOME prints some of an I4MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 November 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 10 integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) character ( len = 7 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7)') j end do write ( *, '('' Col '',10a7)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(i7)' ) a(i,j) end do write ( *, '(i5,1x,10a7)' ) i, ( ctemp(j), j = 1, inc ) end do end do return end subroutine i4mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) character ( len = * ) title call i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 February 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 10 integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) character ( len = 7 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2 integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7)') i end do write ( *, '('' Row '',10a7)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i7)' ) a(i,j) end do write ( *, '(i5,1x,10a7)' ) j, ( ctemp(i), i = 1, inc ) end do end do write ( *, '(a)' ) ' ' return end subroutine i4vec_heap_d ( n, a ) !*****************************************************************************80 ! !! I4VEC_HEAP_D reorders an I4VEC into an descending heap. ! ! Discussion: ! ! An I4VEC is a vector of integer values. ! ! A descending heap is an array A with the property that, for every index J, ! A(J) >= A(2*J) and A(J) >= A(2*J+1), (as long as the indices ! 2*J and 2*J+1 are legal). ! ! A(1) ! / \ ! A(2) A(3) ! / \ / \ ! A(4) A(5) A(6) A(7) ! / \ / \ ! A(8) A(9) A(10) A(11) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 April 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the size of the input array. ! ! Input/output, integer ( kind = 4 ) A(N). ! On input, an unsorted array. ! On output, the array has been reordered into a heap. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) i integer ( kind = 4 ) ifree integer ( kind = 4 ) key integer ( kind = 4 ) m ! ! Only nodes N/2 down to 1 can be "parent" nodes. ! do i = n/2, 1, -1 ! ! Copy the value out of the parent node. ! Position IFREE is now "open". ! key = a(i) ifree = i do ! ! Positions 2*IFREE and 2*IFREE + 1 are the descendants of position ! IFREE. (One or both may not exist because they exceed N.) ! m = 2 * ifree ! ! Does the first position exist? ! if ( n < m ) then exit end if ! ! Does the second position exist? ! if ( m + 1 <= n ) then ! ! If both positions exist, take the larger of the two values, ! and update M if necessary. ! if ( a(m) < a(m+1) ) then m = m + 1 end if end if ! ! If the large descendant is larger than KEY, move it up, ! and update IFREE, the location of the free position, and ! consider the descendants of THIS position. ! if ( a(m) <= key ) then exit end if a(ifree) = a(m) ifree = m end do ! ! Once there is no more shifting to do, KEY moves into the free spot IFREE. ! a(ifree) = key end do return end subroutine i4vec_indicator ( n, a ) !*****************************************************************************80 ! !! I4VEC_INDICATOR sets an I4VEC to the vector A(I)=I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 November 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of elements of A. ! ! Output, integer ( kind = 4 ) A(N), the array to be initialized. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) i do i = 1, n a(i) = i end do return end subroutine i4vec_print ( n, a, title ) !*****************************************************************************80 ! !! I4VEC_PRINT prints an I4VEC. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 November 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, integer ( kind = 4 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title to be printed first. ! TITLE may be blank. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) big integer ( kind = 4 ) i character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if big = maxval ( abs ( a(1:n) ) ) write ( *, '(a)' ) ' ' if ( big < 1000 ) then do i = 1, n write ( *, '(2x,i8,2x,i4)' ) i, a(i) end do else if ( big < 1000000 ) then do i = 1, n write ( *, '(2x,i8,2x,i7)' ) i, a(i) end do else do i = 1, n write ( *, '(2x,i8,2x,i12)' ) i, a(i) end do end if return end subroutine i4vec_reverse ( n, a ) !*****************************************************************************80 ! !! I4VEC_REVERSE reverses the elements of an I4VEC. ! ! Example: ! ! Input: ! ! N = 5, ! A = ( 11, 12, 13, 14, 15 ). ! ! Output: ! ! A = ( 15, 14, 13, 12, 11 ). ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 July 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries in the array. ! ! Input/output, integer ( kind = 4 ) A(N), the array to be reversed. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) i do i = 1, n/2 call i4_swap ( a(i), a(n+1-i) ) end do return end subroutine i4vec_sort_heap_a ( n, a ) !*****************************************************************************80 ! !! I4VEC_SORT_HEAP_A ascending sorts an I4VEC using heap sort. ! ! Discussion: ! ! An I4VEC is a vector of integer values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 April 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries in the array. ! ! Input/output, integer ( kind = 4 ) A(N). ! On input, the array to be sorted; ! On output, the array has been sorted. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) n1 if ( n <= 1 ) then return end if ! ! 1: Put A into descending heap form. ! call i4vec_heap_d ( n, a ) ! ! 2: Sort A. ! ! The largest object in the heap is in A(1). ! Move it to position A(N). ! call i4_swap ( a(1), a(n) ) ! ! Consider the diminished heap of size N1. ! do n1 = n - 1, 2, -1 ! ! Restore the heap structure of A(1) through A(N1). ! call i4vec_heap_d ( n1, a ) ! ! Take the largest object from A(1) and move it to A(N1). ! call i4_swap ( a(1), a(n1) ) end do return end subroutine level_set ( root, adj_num, adj_row, adj, mask, level_num, & level_row, level, node_num ) !*****************************************************************************80 ! !! LEVEL_SET generates the connected level structure rooted at a given node. ! ! Discussion: ! ! Only nodes for which MASK is nonzero will be considered. ! ! The root node chosen by the user is assigned level 1, and masked. ! All (unmasked) nodes reachable from a node in level 1 are ! assigned level 2 and masked. The process continues until there ! are no unmasked nodes adjacent to any node in the current level. ! The number of levels may vary between 2 and NODE_NUM. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 October 2003 ! ! Author: ! ! Original FORTRAN77 version by Alan George, Joseph Liu. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) ROOT, the node at which the level structure ! is to be rooted. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Input/output, integer ( kind = 4 ) MASK(NODE_NUM). On input, only nodes ! with nonzero MASK are to be processed. On output, those nodes which were ! included in the level set have MASK set to 1. ! ! Output, integer ( kind = 4 ) LEVEL_NUM, the number of levels in the level ! structure. ROOT is in level 1. The neighbors of ROOT ! are in level 2, and so on. ! ! Output, integer ( kind = 4 ) LEVEL_ROW(NODE_NUM+1), LEVEL(NODE_NUM), ! the rooted level structure. ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) iccsze integer ( kind = 4 ) j integer ( kind = 4 ) jstop integer ( kind = 4 ) jstrt integer ( kind = 4 ) lbegin integer ( kind = 4 ) level_num integer ( kind = 4 ) level_row(node_num+1) integer ( kind = 4 ) level(node_num) integer ( kind = 4 ) lvlend integer ( kind = 4 ) lvsize integer ( kind = 4 ) mask(node_num) integer ( kind = 4 ) nbr integer ( kind = 4 ) node integer ( kind = 4 ) root mask(root) = 0 level(1) = root level_num = 0 lvlend = 0 iccsze = 1 ! ! LBEGIN is the pointer to the beginning of the current level, and ! LVLEND points to the end of this level. ! do lbegin = lvlend + 1 lvlend = iccsze level_num = level_num + 1 level_row(level_num) = lbegin ! ! Generate the next level by finding all the masked neighbors of nodes ! in the current level. ! do i = lbegin, lvlend node = level(i) jstrt = adj_row(node) jstop = adj_row(node+1) - 1 do j = jstrt, jstop nbr = adj(j) if ( mask(nbr) /= 0 ) then iccsze = iccsze + 1 level(iccsze) = nbr mask(nbr) = 0 end if end do end do ! ! Compute the current level width (the number of nodes encountered.) ! If it is positive, generate the next level. ! lvsize = iccsze - lvlend if ( lvsize <= 0 ) then exit end if end do level_row(level_num+1) = lvlend + 1 ! ! Reset MASK to 1 for the nodes in the level structure. ! mask(level(1:iccsze)) = 1 return end subroutine level_set_print ( node_num, level_num, level_row, level ) !*****************************************************************************80 ! !! LEVEL_SET_PRINT prints level set information. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) LEVEL_NUM, the number of levels. ! ! Input, integer ( kind = 4 ) LEVEL_ROW(LEVEL_NUM+1), organizes the entries ! of LEVEL. The entries for level I are in entries LEVEL_ROW(I) ! through LEVEL_ROW(I+1)-1. ! ! Input, integer ( kind = 4 ) LEVEL(NODE_NUM), is simply a list of the ! nodes in an order induced by the levels. ! implicit none integer ( kind = 4 ) level_num integer ( kind = 4 ) node_num integer ( kind = 4 ) level(node_num) integer ( kind = 4 ) level_row(level_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo integer ( kind = 4 ) jmax integer ( kind = 4 ) jmin write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LEVEL_SET_PRINT' write ( *, '(a)' ) ' Show the level set structure of a rooted graph.' write ( *, '(a,i8)' ) ' The number of nodes is ', node_num write ( *, '(a,i8)' ) ' The number of levels is ', level_num write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Level Min Max Nonzeros ' write ( *, '(a)' ) ' ' do i = 1, level_num jmin = level_row(i) jmax = level_row(i+1) - 1 if ( jmax < jmin ) then write ( *, '(2x,3i4,6x,10i8)' ) i, jmin, jmax else do jlo = jmin, jmax, 5 jhi = min ( jlo + 4, jmax ) if ( jlo == jmin ) then write ( *, '(2x,3i4,3x,5i8)' ) i, jmin, jmax, level(jlo:jhi) else write ( *, '(2x,12x,3x,5i8)' ) level(jlo:jhi) end if end do end if end do return end subroutine perm_check ( n, p, ierror ) !*****************************************************************************80 ! !! PERM_CHECK checks that a vector represents a permutation. ! ! Discussion: ! ! The routine verifies that each of the integers from 1 ! to N occurs among the N entries of the permutation. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 February 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries. ! ! Input, integer ( kind = 4 ) P(N), the array to check. ! ! Output, integer ( kind = 4 ) IERROR, error flag. ! 0, the array represents a permutation. ! nonzero, the array does not represent a permutation. The smallest ! missing value is equal to IERROR. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) ierror integer ( kind = 4 ) ifind integer ( kind = 4 ) iseek integer ( kind = 4 ) p(n) ierror = 0 do iseek = 1, n ierror = iseek do ifind = 1, n if ( p(ifind) == iseek ) then ierror = 0 exit end if end do if ( ierror /= 0 ) then return end if end do return end subroutine perm_inverse3 ( n, perm, perm_inv ) !*****************************************************************************80 ! !! PERM_INVERSE3 produces the inverse of a given permutation. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of items permuted. ! ! Input, integer ( kind = 4 ) PERM(N), a permutation. ! ! Output, integer ( kind = 4 ) PERM_INV(N), the inverse permutation. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) perm(n) integer ( kind = 4 ) perm_inv(n) do i = 1, n perm_inv(perm(i)) = i end do return end subroutine perm_uniform ( n, seed, p ) !*****************************************************************************80 ! !! PERM_UNIFORM selects a random permutation of N objects. ! ! Discussion: ! ! The routine assumes the objects are labeled 1, 2, ... N. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 12 May 2002 ! ! Author: ! ! Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of objects to be permuted. ! ! Input/output, integer ( kind = 4 ) SEED, a seed for the random ! number generator. ! ! Output, integer ( kind = 4 ) P(N), a permutation of ( 1, 2, ..., N ), ! in standard index form. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) i4_uniform_ab integer ( kind = 4 ) j integer ( kind = 4 ) p(n) integer ( kind = 4 ) seed call i4vec_indicator ( n, p ) do i = 1, n j = i4_uniform_ab ( i, n, seed ) call i4_swap ( p(i), p(j) ) end do return end subroutine r82vec_permute ( n, a, p ) !*****************************************************************************80 ! !! R82VEC_PERMUTE permutes an R82VEC in place. ! ! Discussion: ! ! This routine permutes an array of real "objects", but the same ! logic can be used to permute an array of objects of any arithmetic ! type, or an array of objects of any complexity. The only temporary ! storage required is enough to store a single object. The number ! of data movements made is N + the number of cycles of order 2 or more, ! which is never more than N + N/2. ! ! Example: ! ! Input: ! ! N = 5 ! P = ( 2, 4, 5, 1, 3 ) ! A = ( 1.0, 2.0, 3.0, 4.0, 5.0 ) ! (11.0, 22.0, 33.0, 44.0, 55.0 ) ! ! Output: ! ! A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ) ! ( 22.0, 44.0, 55.0, 11.0, 33.0 ). ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 13 March 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of objects. ! ! Input/output, real ( kind = 8 ) A(2,N), the array to be permuted. ! ! Input, integer ( kind = 4 ) P(N), the permutation. P(I) = J means ! that the I-th element of the output array should be the J-th ! element of the input array. P must be a legal permutation ! of the integers from 1 to N, otherwise the algorithm will ! fail catastrophically. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ), parameter :: ndim = 2 real ( kind = 8 ) a(ndim,n) real ( kind = 8 ) a_temp(ndim) integer ( kind = 4 ) ierror integer ( kind = 4 ) iget integer ( kind = 4 ) iput integer ( kind = 4 ) istart integer ( kind = 4 ) p(n) call perm_check ( n, p, ierror ) if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R82VEC_PERMUTE - Fatal error!' write ( *, '(a)' ) ' The input array does not represent' write ( *, '(a)' ) ' a proper permutation. In particular, the' write ( *, '(a,i8)' ) ' array is missing the value ', ierror stop 1 end if ! ! Search for the next element of the permutation that has not been used. ! do istart = 1, n if ( p(istart) < 0 ) then cycle else if ( p(istart) == istart ) then p(istart) = -p(istart) cycle else a_temp(1:ndim) = a(1:ndim,istart) iget = istart ! ! Copy the new value into the vacated entry. ! do iput = iget iget = p(iget) p(iput) = -p(iput) if ( iget < 1 .or. n < iget ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R82VEC_PERMUTE - Fatal error!' write ( *, '(a)' ) ' A permutation index is out of range.' write ( *, '(a,i8,a,i8)' ) ' P(', iput, ') = ', iget stop 1 end if if ( iget == istart ) then a(1:ndim,iput) = a_temp(1:ndim) exit end if a(1:ndim,iput) = a(1:ndim,iget) end do end if end do ! ! Restore the signs of the entries. ! p(1:n) = -p(1:n) return end subroutine r8mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_PRINT_SOME prints some of an R8MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 12 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) logical d_is_int integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)') j end do write ( *, '('' Col '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j), j = 1, inc ) end do end do return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2 integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7,7x)') i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine rcm ( root, adj_num, adj_row, adj, mask, perm, iccsze, node_num ) !*****************************************************************************80 ! !! RCM renumbers a connected component by the reverse Cuthill McKee algorithm. ! ! Discussion: ! ! The connected component is specified by a node ROOT and a mask. ! The numbering starts at the root node. ! ! An outline of the algorithm is as follows: ! ! X(1) = ROOT. ! ! for ( I = 1 to N-1 ) ! Find all unlabeled neighbors of X(I), ! assign them the next available labels, in order of increasing degree. ! ! When done, reverse the ordering. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 August 2013 ! ! Author: ! ! Original FORTRAN77 version by Alan George, Joseph Liu. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Parameters: ! ! Input, integer ( kind = 4 ) ROOT, the node that defines the connected ! component. It is used as the starting point for the RCM ordering. ! 1 <= ROOT <= NODE_NUM. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Input/output, integer ( kind = 4 ) MASK(NODE_NUM), a mask for the nodes. ! Only those nodes with nonzero input mask values are considered by the ! routine. The nodes numbered by RCM will have their mask values ! set to zero. ! ! Output, integer ( kind = 4 ) PERM(NODE_NUM), the RCM ordering. ! ! Output, integer ( kind = 4 ) ICCSZE, the size of the connected component ! that has been numbered. ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! 1 <= NODE_NUM. ! ! Local Parameters: ! ! Workspace, integer DEG(NODE_NUM), a temporary vector used to hold ! the degree of the nodes in the section graph specified by mask and root. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) deg(node_num) integer ( kind = 4 ) fnbr integer ( kind = 4 ) i integer ( kind = 4 ) iccsze integer ( kind = 4 ) j integer ( kind = 4 ) jstop integer ( kind = 4 ) jstrt integer ( kind = 4 ) k integer ( kind = 4 ) l integer ( kind = 4 ) lbegin integer ( kind = 4 ) lnbr integer ( kind = 4 ) lperm integer ( kind = 4 ) lvlend integer ( kind = 4 ) mask(node_num) integer ( kind = 4 ) nbr integer ( kind = 4 ) node integer ( kind = 4 ) perm(node_num) integer ( kind = 4 ) root ! ! Make sure NODE_NUM is legal. ! if ( node_num < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCM - Fatal error!' write ( *, '(a,i4)' ) ' Illegal input value of NODE_NUM = ', node_num write ( *, '(a,i4)' ) ' Acceptable values must be positive.' stop 1 end if ! ! Make sure ROOT is legal. ! if ( root < 1 .or. node_num < root ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCM - Fatal error!' write ( *, '(a,i4)' ) ' Illegal input value of ROOT = ', root write ( *, '(a,i4)' ) ' Acceptable values are between 1 and ', node_num stop 1 end if ! ! Find the degrees of the nodes in the component specified by MASK and ROOT. ! call degree ( root, adj_num, adj_row, adj, mask, deg, iccsze, perm, node_num ) mask(root) = 0 if ( iccsze < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCM - Fatal error!' write ( *, '(a,i4)' ) ' Inexplicable component size ICCSZE = ', iccsze stop 1 end if ! ! If the connected component is a singleton, there is no reordering to do. ! if ( iccsze == 1 ) then return end if ! ! Carry out the reordering procedure. ! ! LBEGIN and LVLEND point to the beginning and ! the end of the current level respectively. ! lvlend = 0 lnbr = 1 do while ( lvlend < lnbr ) lbegin = lvlend + 1 lvlend = lnbr do i = lbegin, lvlend ! ! For each node in the current level... ! node = perm(i) jstrt = adj_row(node) jstop = adj_row(node+1) - 1 ! ! Find the unnumbered neighbors of NODE. ! ! FNBR and LNBR point to the first and last neighbors ! of the current node in PERM. ! fnbr = lnbr + 1 do j = jstrt, jstop nbr = adj(j) if ( mask(nbr) /= 0 ) then lnbr = lnbr + 1 mask(nbr) = 0 perm(lnbr) = nbr end if end do ! ! If no neighbors, skip to next node in this level. ! if ( lnbr <= fnbr ) then cycle end if ! ! Sort the neighbors of NODE in increasing order by degree. ! Linear insertion is used. ! k = fnbr do while ( k < lnbr ) l = k k = k + 1 nbr = perm(k) do while ( fnbr < l ) lperm = perm(l) if ( deg(lperm) <= deg(nbr) ) then exit end if perm(l+1) = lperm l = l - 1 end do perm(l+1) = nbr end do end do end do ! ! We now have the Cuthill-McKee ordering. ! Reverse it to get the Reverse Cuthill-McKee ordering. ! call i4vec_reverse ( iccsze, perm ) return end subroutine root_find ( root, adj_num, adj_row, adj, mask, level_num, & level_row, level, node_num ) !*****************************************************************************80 ! !! ROOT_FIND finds a pseudo-peripheral node. ! ! Discussion: ! ! The diameter of a graph is the maximum distance (number of edges) ! between any two nodes of the graph. ! ! The eccentricity of a node is the maximum distance between that ! node and any other node of the graph. ! ! A peripheral node is a node whose eccentricity equals the ! diameter of the graph. ! ! A pseudo-peripheral node is an approximation to a peripheral node; ! it may be a peripheral node, but all we know is that we tried our ! best. ! ! The routine is given a graph, and seeks pseudo-peripheral nodes, ! using a modified version of the scheme of Gibbs, Poole and ! Stockmeyer. It determines such a node for the section subgraph ! specified by MASK and ROOT. ! ! The routine also determines the level structure associated with ! the given pseudo-peripheral node; that is, how far each node ! is from the pseudo-peripheral node. The level structure is ! returned as a list of nodes LS, and pointers to the beginning ! of the list of nodes that are at a distance of 0, 1, 2, ..., ! NODE_NUM-1 from the pseudo-peripheral node. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 October 2003 ! ! Author: ! ! Original FORTRAN77 version by Alan George, Joseph Liu. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Alan George, Joseph Liu, ! Computer Solution of Large Sparse Positive Definite Systems, ! Prentice Hall, 1981. ! ! Norman Gibbs, William Poole, Paul Stockmeyer, ! An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix, ! SIAM Journal on Numerical Analysis, ! Volume 13, pages 236-250, 1976. ! ! Norman Gibbs, ! Algorithm 509: A Hybrid Profile Reduction Algorithm, ! ACM Transactions on Mathematical Software, ! Volume 2, pages 378-387, 1976. ! ! Parameters: ! ! Input/output, integer ( kind = 4 ) ROOT. On input, ROOT is a node in the ! the component of the graph for which a pseudo-peripheral node is ! sought. On output, ROOT is the pseudo-peripheral node obtained. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacency entries. ! ! Input, integer ( kind = 4 ) ADJ_ROW(NODE_NUM+1). Information about ! row I is stored in entries ADJ_ROW(I) through ADJ_ROW(I+1)-1 of ADJ. ! ! Input, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency structure. ! For each row, it contains the column indices of the nonzero entries. ! ! Input, integer ( kind = 4 ) MASK(NODE_NUM), specifies a section subgraph. ! Nodes for which MASK is zero are ignored by FNROOT. ! ! Output, integer ( kind = 4 ) LEVEL_NUM, is the number of levels in the ! level structure rooted at the node ROOT. ! ! Output, integer ( kind = 4 ) LEVEL_ROW(NODE_NUM+1), LEVEL(NODE_NUM), the ! level structure array pair containing the level structure found. ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_row(node_num+1) integer ( kind = 4 ) iccsze integer ( kind = 4 ) j integer ( kind = 4 ) jstrt integer ( kind = 4 ) k integer ( kind = 4 ) kstop integer ( kind = 4 ) kstrt integer ( kind = 4 ) level(node_num) integer ( kind = 4 ) level_num integer ( kind = 4 ) level_num2 integer ( kind = 4 ) level_row(node_num+1) integer ( kind = 4 ) mask(node_num) integer ( kind = 4 ) mindeg integer ( kind = 4 ) nabor integer ( kind = 4 ) ndeg integer ( kind = 4 ) node integer ( kind = 4 ) root ! ! Determine the level structure rooted at ROOT. ! call level_set ( root, adj_num, adj_row, adj, mask, level_num, & level_row, level, node_num ) ! ! Count the number of nodes in this level structure. ! iccsze = level_row(level_num+1) - 1 ! ! Extreme case: ! A complete graph has a level set of only a single level. ! Every node is equally good (or bad). ! if ( level_num == 1 ) then return end if ! ! Extreme case: ! A "line graph" 0--0--0--0--0 has every node in its only level. ! By chance, we've stumbled on the ideal root. ! if ( level_num == iccsze ) then return end if ! ! Pick any node from the last level that has minimum degree ! as the starting point to generate a new level set. ! do mindeg = iccsze jstrt = level_row(level_num) root = level(jstrt) if ( jstrt < iccsze ) then do j = jstrt, iccsze node = level(j) ndeg = 0 kstrt = adj_row(node) kstop = adj_row(node+1) - 1 do k = kstrt, kstop nabor = adj(k) if ( 0 < mask(nabor) ) then ndeg = ndeg + 1 end if end do if ( ndeg < mindeg ) then root = node mindeg = ndeg end if end do end if ! ! Generate the rooted level structure associated with this node. ! call level_set ( root, adj_num, adj_row, adj, mask, level_num2, & level_row, level, node_num ) ! ! If the number of levels did not increase, accept the new ROOT. ! if ( level_num2 <= level_num ) then exit end if level_num = level_num2 ! ! In the unlikely case that ROOT is one endpoint of a line graph, ! we can exit now. ! if ( iccsze <= level_num ) then exit end if end do return end subroutine sort_heap_external ( n, indx, i, j, isgn ) !*****************************************************************************80 ! !! SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. ! ! Discussion: ! ! The actual list of data is not passed to the routine. Hence this ! routine may be used to sort integers, reals, numbers, names, ! dates, shoe sizes, and so on. After each call, the routine asks ! the user to compare or interchange two items, until a special ! return value signals that the sorting is completed. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 February 2004 ! ! Author: ! ! Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of items to be sorted. ! ! Input/output, integer ( kind = 4 ) INDX, the main communication signal. ! ! The user must set INDX to 0 before the first call. ! Thereafter, the user should not change the value of INDX until ! the sorting is done. ! ! On return, if INDX is ! ! greater than 0, ! * interchange items I and J; ! * call again. ! ! less than 0, ! * compare items I and J; ! * set ISGN = -1 if I < J, ISGN = +1 if J < I; ! * call again. ! ! equal to 0, the sorting is done. ! ! Output, integer ( kind = 4 ) I, J, the indices of two items. ! On return with INDX positive, elements I and J should be interchanged. ! On return with INDX negative, elements I and J should be compared, and ! the result reported in ISGN on the next call. ! ! Input, integer ( kind = 4 ) ISGN, results of comparison of elements ! I and J. (Used only when the previous call returned INDX less than 0). ! ISGN <= 0 means I is less than or equal to J; ! 0 <= ISGN means I is greater than or equal to J. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ), save :: i_save = 0 integer ( kind = 4 ) indx integer ( kind = 4 ) isgn integer ( kind = 4 ) j integer ( kind = 4 ), save :: j_save = 0 integer ( kind = 4 ), save :: k = 0 integer ( kind = 4 ), save :: k1 = 0 integer ( kind = 4 ) n integer ( kind = 4 ), save :: n1 = 0 ! ! INDX = 0: This is the first call. ! if ( indx == 0 ) then i_save = 0 j_save = 0 k = n / 2 k1 = k n1 = n ! ! INDX < 0: The user is returning the results of a comparison. ! else if ( indx < 0 ) then if ( indx == -2 ) then if ( isgn < 0 ) then i_save = i_save + 1 end if j_save = k1 k1 = i_save indx = -1 i = i_save j = j_save return end if if ( 0 < isgn ) then indx = 2 i = i_save j = j_save return end if if ( k <= 1 ) then if ( n1 == 1 ) then i_save = 0 j_save = 0 indx = 0 else i_save = n1 n1 = n1 - 1 j_save = 1 indx = 1 end if i = i_save j = j_save return end if k = k - 1 k1 = k ! ! 0 < INDX, the user was asked to make an interchange. ! else if ( indx == 1 ) then k1 = k end if do i_save = 2 * k1 if ( i_save == n1 ) then j_save = k1 k1 = i_save indx = -1 i = i_save j = j_save return else if ( i_save <= n1 ) then j_save = i_save + 1 indx = -2 i = i_save j = j_save return end if if ( k <= 1 ) then exit end if k = k - 1 k1 = k end do if ( n1 == 1 ) then i_save = 0 j_save = 0 indx = 0 i = i_save j = j_save else i_save = n1 n1 = n1 - 1 j_save = 1 indx = 1 i = i_save j = j_save end if return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end subroutine triangulation_neighbor_triangles ( triangle_order, triangle_num, & triangle_node, triangle_neighbor ) !*****************************************************************************80 ! !! TRIANGULATION_NEIGHBOR_TRIANGLES determines triangle neighbors. ! ! Discussion: ! ! A triangulation of a set of nodes can be completely described by ! the coordinates of the nodes, and the list of nodes that make up ! each triangle. However, in some cases, it is necessary to know ! triangle adjacency information, that is, which triangle, if any, ! is adjacent to a given triangle on a particular side. ! ! This routine creates a data structure recording this information. ! ! The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM ! data items. ! ! Note that ROW is a work array allocated dynamically inside this ! routine. It is possible, for very large values of TRIANGLE_NUM, ! that the necessary amount of memory will not be accessible, and the ! routine will fail. This is a limitation of the implementation of ! dynamic arrays in FORTRAN90. One way to get around this would be ! to require the user to declare ROW in the calling routine ! as an allocatable array, get the necessary memory explicitly with ! an ALLOCATE statement, and then pass ROW into this routine. ! ! Of course, the point of dynamic arrays was to make it easy to ! hide these sorts of temporary work arrays from the poor user! ! ! This routine was revised to store the edge data in a column ! array rather than a row array. ! ! Example: ! ! The input information from TRIANGLE_NODE: ! ! Triangle Nodes ! -------- --------------- ! 1 3 4 1 ! 2 3 1 2 ! 3 3 2 8 ! 4 2 1 5 ! 5 8 2 13 ! 6 8 13 9 ! 7 3 8 9 ! 8 13 2 5 ! 9 9 13 7 ! 10 7 13 5 ! 11 6 7 5 ! 12 9 7 6 ! 13 10 9 6 ! 14 6 5 12 ! 15 11 6 12 ! 16 10 6 11 ! ! The output information in TRIANGLE_NEIGHBOR: ! ! Triangle Neighboring Triangles ! -------- --------------------- ! ! 1 -1 -1 2 ! 2 1 4 3 ! 3 2 5 7 ! 4 2 -1 8 ! 5 3 8 6 ! 6 5 9 7 ! 7 3 6 -1 ! 8 5 4 10 ! 9 6 10 12 ! 10 9 8 11 ! 11 12 10 14 ! 12 9 11 13 ! 13 -1 12 16 ! 14 11 -1 15 ! 15 16 14 -1 ! 16 13 15 -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 February 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) TRIANGLE_ORDER, the order of the triangles. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Input, integer ( kind = 4 ) TRIANGLE_NODE(TRIANGLE_ORDER,TRIANGLE_NUM), ! the nodes that make up each triangle. ! ! Output, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), the three ! triangles that are direct neighbors of a given triangle. ! TRIANGLE_NEIGHBOR(1,I) is the index of the triangle which touches side 1, ! defined by nodes 2 and 3, and so on. TRIANGLE_NEIGHBOR(1,I) is negative ! if there is no neighbor on that side. In this case, that side of the ! triangle lies on the boundary of the triangulation. ! implicit none integer ( kind = 4 ) triangle_num integer ( kind = 4 ) triangle_order integer ( kind = 4 ) col(4,3*triangle_num) integer ( kind = 4 ) i integer ( kind = 4 ) icol integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) side1 integer ( kind = 4 ) side2 integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) tri integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) integer ( kind = 4 ) tri1 integer ( kind = 4 ) tri2 ! ! Step 1. ! From the list of nodes for triangle T, of the form: (I,J,K) ! construct the three neighbor relations: ! ! (I,J,3,T) or (J,I,3,T), ! (J,K,1,T) or (K,J,1,T), ! (K,I,2,T) or (I,K,2,T) ! ! where we choose (I,J,1,T) if I < J, or else (J,I,1,T) ! do tri = 1, triangle_num i = triangle_node(1,tri) j = triangle_node(2,tri) k = triangle_node(3,tri) if ( i < j ) then col(1:4,3*(tri-1)+1) = (/ i, j, 3, tri /) else col(1:4,3*(tri-1)+1) = (/ j, i, 3, tri /) end if if ( j < k ) then col(1:4,3*(tri-1)+2) = (/ j, k, 1, tri /) else col(1:4,3*(tri-1)+2) = (/ k, j, 1, tri /) end if if ( k < i ) then col(1:4,3*(tri-1)+3) = (/ k, i, 2, tri /) else col(1:4,3*(tri-1)+3) = (/ i, k, 2, tri /) end if end do ! ! Step 2. Perform an ascending dictionary sort on the neighbor relations. ! We only intend to sort on rows 1 and 2; the routine we call here ! sorts on rows 1 through 4 but that won't hurt us. ! ! What we need is to find cases where two triangles share an edge. ! Say they share an edge defined by the nodes I and J. Then there are ! two columns of COL that start out ( I, J, ?, ? ). By sorting COL, ! we make sure that these two columns occur consecutively. That will ! make it easy to notice that the triangles are neighbors. ! call i4col_sort_a ( 4, 3*triangle_num, col ) ! ! Step 3. Neighboring triangles show up as consecutive columns with ! identical first two entries. Whenever you spot this happening, ! make the appropriate entries in TRIANGLE_NEIGHBOR. ! triangle_neighbor(1:3,1:triangle_num) = -1 icol = 1 do if ( 3 * triangle_num <= icol ) then exit end if if ( col(1,icol) /= col(1,icol+1) .or. col(2,icol) /= col(2,icol+1) ) then icol = icol + 1 cycle end if side1 = col(3,icol) tri1 = col(4,icol) side2 = col(3,icol+1) tri2 = col(4,icol+1) triangle_neighbor(side1,tri1) = tri2 triangle_neighbor(side2,tri2) = tri1 icol = icol + 2 end do return end subroutine triangulation_order3_adj_count ( node_num, triangle_num, & triangle_node, triangle_neighbor, adj_num, adj_col ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER3_ADJ_COUNT counts adjacencies in a triangulation. ! ! Discussion: ! ! This routine is called to count the adjacencies, so that the ! appropriate amount of memory can be set aside for storage when ! the adjacency structure is created. ! ! The triangulation is assumed to involve 3-node triangles. ! ! Two nodes are "adjacent" if they are both nodes in some triangle. ! Also, a node is considered to be adjacent to itself. ! ! Diagram: ! ! 3 ! s |\ ! i | \ ! d | \ ! e | \ side 2 ! | \ ! 3 | \ ! | \ ! 1-------2 ! ! side 1 ! ! The local node numbering ! ! ! 21-22-23-24-25 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 16-17-18-19-20 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 11-12-13-14-15 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 6--7--8--9-10 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 1--2--3--4--5 ! ! A sample grid. ! ! ! Below, we have a chart that summarizes the adjacency relationships ! in the sample grid. On the left, we list the node, and its neighbors, ! with an asterisk to indicate the adjacency of the node to itself ! (in some cases, you want to count this self adjacency and in some ! you don't). On the right, we list the number of adjancencies to ! lower-indexed nodes, to the node itself, to higher-indexed nodes, ! the total number of adjacencies for this node, and the location ! of the first and last entries required to list this set of adjacencies ! in a single list of all the adjacencies. ! ! N Adjacencies Below Self Above Total First Last ! ! -- -- -- -- -- -- -- -- -- -- -- -- --- 0 ! 1: * 2 6 0 1 2 3 1 3 ! 2: 1 * 3 6 7 1 1 3 5 4 8 ! 3: 2 * 4 7 8 1 1 3 5 9 13 ! 4: 3 * 5 8 9 1 1 3 5 14 18 ! 5: 4 * 9 10 1 1 2 4 19 22 ! 6: 1 2 * 7 11 2 1 2 5 23 27 ! 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 ! 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 ! 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 ! 10: 5 9 * 14 15 2 1 2 5 49 53 ! 11: 6 7 * 12 16 2 1 2 5 54 58 ! 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 ! 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 ! 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 ! 15: 10 14 * 19 20 2 1 2 5 80 84 ! 16: 11 12 * 17 21 2 1 2 5 85 89 ! 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 ! 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 ! 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 ! 20: 15 19 * 24 25 2 1 2 5 111 115 ! 21: 16 17 * 22 2 1 1 4 116 119 ! 22: 17 18 21 * 23 3 1 1 5 120 124 ! 23: 18 19 22 * 24 3 1 1 5 125 129 ! 24: 19 20 23 * 25 3 1 1 5 130 134 ! 25: 20 24 * 2 1 0 3 135 137 ! -- -- -- -- -- -- -- -- -- -- -- -- 138 --- ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 24 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Input, integer ( kind = 4 ) TRIANGLE_NODE(3,TRIANGLE_NUM), lists the nodes ! that make up each triangle, in counterclockwise order. ! ! Input, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), for each ! side of a triangle, lists the neighboring triangle, or -1 if there is ! no neighbor. ! ! Output, integer ( kind = 4 ) ADJ_NUM, the number of adjacencies. ! ! Output, integer ( kind = 4 ) ADJ_COL(NODE_NUM+1). Information about ! column J is stored in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. ! implicit none integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num integer ( kind = 4 ), parameter :: triangle_order = 3 integer ( kind = 4 ) adj_num integer ( kind = 4 ) adj_col(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) n1 integer ( kind = 4 ) n2 integer ( kind = 4 ) n3 integer ( kind = 4 ) triangle integer ( kind = 4 ) triangle2 integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) adj_num = 0 ! ! Set every node to be adjacent to itself. ! adj_col(1:node_num) = 1 ! ! Examine each triangle. ! do triangle = 1, triangle_num n1 = triangle_node(1,triangle) n2 = triangle_node(2,triangle) n3 = triangle_node(3,triangle) ! ! Add edge (1,2) if this is the first occurrence, ! that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) ! or if this triangle is the first of the pair in which the edge ! occurs (TRIANGLE < TRIANGLE2). ! triangle2 = triangle_neighbor(1,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj_col(n1) = adj_col(n1) + 1 adj_col(n2) = adj_col(n2) + 1 end if ! ! Add edge (2,3). ! triangle2 = triangle_neighbor(2,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj_col(n2) = adj_col(n2) + 1 adj_col(n3) = adj_col(n3) + 1 end if ! ! Add edge (3,1). ! triangle2 = triangle_neighbor(3,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj_col(n1) = adj_col(n1) + 1 adj_col(n3) = adj_col(n3) + 1 end if end do ! ! We used ADJ_COL to count the number of entries in each column. ! Convert it to pointers into the ADJ array. ! adj_col(2:node_num+1) = adj_col(1:node_num) adj_col(1) = 1 do i = 2, node_num + 1 adj_col(i) = adj_col(i-1) + adj_col(i) end do adj_num = adj_col(node_num+1) - 1 return end subroutine triangulation_order3_adj_set ( node_num, triangle_num, & triangle_node, triangle_neighbor, adj_num, adj_col, adj ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER3_ADJ_SET sets adjacencies in a triangulation. ! ! Discussion: ! ! This routine is called to count the adjacencies, so that the ! appropriate amount of memory can be set aside for storage when ! the adjacency structure is created. ! ! The triangulation is assumed to involve 3-node triangles. ! ! Two nodes are "adjacent" if they are both nodes in some triangle. ! Also, a node is considered to be adjacent to itself. ! ! This routine can be used to create the compressed column storage ! for a linear triangle finite element discretization of ! Poisson's equation in two dimensions. ! ! Diagram: ! ! 3 ! s |\ ! i | \ ! d | \ ! e | \ side 2 ! | \ ! 3 | \ ! | \ ! 1-------2 ! ! side 1 ! ! The local node numbering ! ! ! 21-22-23-24-25 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 16-17-18-19-20 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 11-12-13-14-15 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 6--7--8--9-10 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 1--2--3--4--5 ! ! A sample grid ! ! ! Below, we have a chart that summarizes the adjacency relationships ! in the sample grid. On the left, we list the node, and its neighbors, ! with an asterisk to indicate the adjacency of the node to itself ! (in some cases, you want to count this self adjacency and in some ! you don't). On the right, we list the number of adjancencies to ! lower-indexed nodes, to the node itself, to higher-indexed nodes, ! the total number of adjacencies for this node, and the location ! of the first and last entries required to list this set of adjacencies ! in a single list of all the adjacencies. ! ! N Adjacencies Below Self Above Total First Last ! ! -- -- -- -- -- -- -- -- -- -- -- -- --- 0 ! 1: * 2 6 0 1 2 3 1 3 ! 2: 1 * 3 6 7 1 1 3 5 4 8 ! 3: 2 * 4 7 8 1 1 3 5 9 13 ! 4: 3 * 5 8 9 1 1 3 5 14 18 ! 5: 4 * 9 10 1 1 2 4 19 22 ! 6: 1 2 * 7 11 2 1 2 5 23 27 ! 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 ! 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 ! 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 ! 10: 5 9 * 14 15 2 1 2 5 49 53 ! 11: 6 7 * 12 16 2 1 2 5 54 58 ! 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 ! 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 ! 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 ! 15: 10 14 * 19 20 2 1 2 5 80 84 ! 16: 11 12 * 17 21 2 1 2 5 85 89 ! 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 ! 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 ! 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 ! 20: 15 19 * 24 25 2 1 2 5 111 115 ! 21: 16 17 * 22 2 1 1 4 116 119 ! 22: 17 18 21 * 23 3 1 1 5 120 124 ! 23: 18 19 22 * 24 3 1 1 5 125 129 ! 24: 19 20 23 * 25 3 1 1 5 130 134 ! 25: 20 24 * 2 1 0 3 135 137 ! -- -- -- -- -- -- -- -- -- -- -- -- 138 --- ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 24 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Input, integer ( kind = 4 ) TRIANGLE_NODE(3,TRIANGLE_NUM), lists the nodes ! that make up each triangle in counterclockwise order. ! ! Input, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), for each ! side of a triangle, lists the neighboring triangle, or -1 if there is ! no neighbor. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacencies. ! ! Input, integer ( kind = 4 ) ADJ_COL(NODE_NUM+1). Information about ! column J is stored in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. ! ! Output, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency information. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num integer ( kind = 4 ), parameter :: triangle_order = 3 integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_copy(node_num) integer ( kind = 4 ) adj_col(node_num+1) integer ( kind = 4 ) k1 integer ( kind = 4 ) k2 integer ( kind = 4 ) n1 integer ( kind = 4 ) n2 integer ( kind = 4 ) n3 integer ( kind = 4 ) node integer ( kind = 4 ) triangle integer ( kind = 4 ) triangle2 integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) adj(1:adj_num) = -1 adj_copy(1:node_num) = adj_col(1:node_num) ! ! Set every node to be adjacent to itself. ! do node = 1, node_num adj(adj_copy(node)) = node adj_copy(node) = adj_copy(node) + 1 end do ! ! Examine each triangle. ! do triangle = 1, triangle_num n1 = triangle_node(1,triangle) n2 = triangle_node(2,triangle) n3 = triangle_node(3,triangle) ! ! Add edge (1,2) if this is the first occurrence, ! that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) ! or if this triangle is the first of the pair in which the edge ! occurs (TRIANGLE < TRIANGLE2). ! triangle2 = triangle_neighbor(1,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj(adj_copy(n1)) = n2 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n2)) = n1 adj_copy(n2) = adj_copy(n2) + 1 end if ! ! Add edge (2,3). ! triangle2 = triangle_neighbor(2,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj(adj_copy(n2)) = n3 adj_copy(n2) = adj_copy(n2) + 1 adj(adj_copy(n3)) = n2 adj_copy(n3) = adj_copy(n3) + 1 end if ! ! Add edge (3,1). ! triangle2 = triangle_neighbor(3,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj(adj_copy(n1)) = n3 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n3)) = n1 adj_copy(n3) = adj_copy(n3) + 1 end if end do ! ! Ascending sort the entries for each node. ! do node = 1, node_num k1 = adj_col(node) k2 = adj_col(node+1) - 1 call i4vec_sort_heap_a ( k2+1-k1, adj(k1:k2) ) end do return end subroutine triangulation_order3_example2 ( node_num, triangle_num, node_xy, & triangle_node, triangle_neighbor ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER3_EXAMPLE2 returns an example triangulation. ! ! Discussion: ! ! This triangulation is actually a Delaunay triangulation. ! ! The appropriate input values of NODE_NUM and TRIANGLE_NUM can be ! determined by calling TRIANGULATION_ORDER3_EXAMPLE2_SIZE first. ! ! Diagram: ! ! 21-22-23-24-25 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 16-17-18-19-20 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 11-12-13-14-15 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 6--7--8--9-10 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 1--2--3--4--5 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Output, real ( kind = 8 ) NODE_XY(2,NODE_NUM), the coordinates of the ! nodes. ! ! Output, integer ( kind = 4 ) TRIANGLE_NODE(3,TRIANGLE_NUM), lists the ! nodes that make up each triangle, in counterclockwise order. ! ! Output, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), for each ! side of a triangle, lists the neighboring triangle, or -1 if there is ! no neighbor. ! implicit none integer ( kind = 4 ), parameter :: dim_num = 2 integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num integer ( kind = 4 ), parameter :: triangle_order = 3 real ( kind = 8 ) node_xy(dim_num,node_num) integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) node_xy = reshape ( (/ & 0.0D+00, 0.0D+00, & 1.0D+00, 0.0D+00, & 2.0D+00, 0.0D+00, & 3.0D+00, 0.0D+00, & 4.0D+00, 0.0D+00, & 0.0D+00, 1.0D+00, & 1.0D+00, 1.0D+00, & 2.0D+00, 1.0D+00, & 3.0D+00, 1.0D+00, & 4.0D+00, 1.0D+00, & 0.0D+00, 2.0D+00, & 1.0D+00, 2.0D+00, & 2.0D+00, 2.0D+00, & 3.0D+00, 2.0D+00, & 4.0D+00, 2.0D+00, & 0.0D+00, 3.0D+00, & 1.0D+00, 3.0D+00, & 2.0D+00, 3.0D+00, & 3.0D+00, 3.0D+00, & 4.0D+00, 3.0D+00, & 0.0D+00, 4.0D+00, & 1.0D+00, 4.0D+00, & 2.0D+00, 4.0D+00, & 3.0D+00, 4.0D+00, & 4.0D+00, 4.0D+00 & /), (/ dim_num, node_num /) ) triangle_node(1:triangle_order,1:triangle_num) = reshape ( (/ & 1, 2, 6, & 7, 6, 2, & 2, 3, 7, & 8, 7, 3, & 3, 4, 8, & 9, 8, 4, & 4, 5, 9, & 10, 9, 5, & 6, 7, 11, & 12, 11, 7, & 7, 8, 12, & 13, 12, 8, & 8, 9, 13, & 14, 13, 9, & 9, 10, 14, & 15, 14, 10, & 11, 12, 16, & 17, 16, 12, & 12, 13, 17, & 18, 17, 13, & 13, 14, 18, & 19, 18, 14, & 14, 15, 19, & 20, 19, 15, & 16, 17, 21, & 22, 21, 17, & 17, 18, 22, & 23, 22, 18, & 18, 19, 23, & 24, 23, 19, & 19, 20, 24, & 25, 24, 20 /), (/ triangle_order, triangle_num /) ) triangle_neighbor(1:3,1:triangle_num) = reshape ( (/ & -1, 2, -1, & 9, 1, 3, & -1, 4, 2, & 11, 3, 5, & -1, 6, 4, & 13, 5, 7, & -1, 8, 6, & 15, 7, -1, & 2, 10, -1, & 17, 9, 11, & 4, 12, 10, & 19, 11, 13, & 6, 14, 12, & 21, 13, 15, & 8, 16, 14, & 23, 15, -1, & 10, 18, -1, & 25, 17, 19, & 12, 20, 18, & 27, 19, 21, & 14, 22, 20, & 29, 21, 23, & 16, 24, 22, & 31, 23, -1, & 18, 26, -1, & -1, 25, 27, & 20, 28, 26, & -1, 27, 29, & 22, 30, 28, & -1, 29, 31, & 24, 32, 30, & -1, 31, -1 /), (/ 3, triangle_num /) ) return end subroutine triangulation_order3_example2_size ( node_num, triangle_num, & hole_num ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER3_EXAMPLE2_SIZE returns the size of an example. ! ! Diagram: ! ! 21-22-23-24-25 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 16-17-18-19-20 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 11-12-13-14-15 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 6--7--8--9-10 ! |\ |\ |\ |\ | ! | \| \| \| \| ! 1--2--3--4--5 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Output, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Output, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Output, integer ( kind = 4 ) HOLE_NUM, the number of holes. ! implicit none integer ( kind = 4 ) hole_num integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num node_num = 25 triangle_num = 32 hole_num = 0 return end subroutine triangulation_order6_adj_count ( node_num, triangle_num, & triangle_node, triangle_neighbor, adj_num, adj_col ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER6_ADJ_COUNT counts adjacencies in a triangulation. ! ! Discussion: ! ! This routine is called to count the adjacencies, so that the ! appropriate amount of memory can be set aside for storage when ! the adjacency structure is created. ! ! The triangulation is assumed to involve 6-node triangles. ! ! Two nodes are "adjacent" if they are both nodes in some triangle. ! Also, a node is considered to be adjacent to itself. ! ! Diagram: ! ! 3 ! s |\ ! i | \ ! d | \ ! e 6 5 side 2 ! | \ ! 3 | \ ! | \ ! 1---4---2 ! ! side 1 ! ! The local node numbering ! ! ! 21-22-23-24-25 ! |\ |\ | ! | \ | \ | ! 16 17 18 19 20 ! | \ | \ | ! | \| \| ! 11-12-13-14-15 ! |\ |\ | ! | \ | \ | ! 6 7 8 9 10 ! | \ | \ | ! | \| \| ! 1--2--3--4--5 ! ! A sample grid. ! ! ! Below, we have a chart that lists the nodes adjacent to each node, with ! an asterisk to indicate the adjacency of the node to itself ! (in some cases, you want to count this self adjacency and in some ! you don't). ! ! N Adjacencies ! ! 1: * 2 3 6 7 11 ! 2: 1 * 3 6 7 11 ! 3: 1 2 * 4 5 6 7 8 9 11 12 13 ! 4: 3 * 5 8 9 13 ! 5: 3 4 * 8 9 10 13 14 15 ! 6: 1 2 3 * 7 11 ! 7: 1 2 3 6 * 8 11 12 13 ! 8: 3 4 5 7 * 9 11 12 13 ! 9: 3 4 5 8 * 10 13 14 15 ! 10: 5 9 * 13 14 15 ! 11: 1 2 3 6 7 8 * 12 13 16 17 21 ! 12: 3 7 8 11 * 13 16 17 21 ! 13: 3 4 5 7 8 9 10 11 12 * 14 15 16 17 18 19 21 22 23 ! 14: 5 9 10 13 * 15 18 19 23 ! 15: 5 9 10 13 14 * 18 19 20 23 24 25 ! 16: 11 12 13 * 17 21 ! 17: 11 12 13 16 * 18 21 22 23 ! 18: 13 14 15 17 * 19 21 22 23 ! 19: 13 14 15 18 * 20 23 24 25 ! 20: 15 19 * 23 24 25 ! 21: 11 12 13 16 17 18 * 22 23 ! 22: 13 17 18 21 * 23 ! 23: 13 14 15 17 18 19 20 21 22 * 24 25 ! 24: 15 19 20 23 * 25 ! 25: 15 19 20 23 24 * ! ! Below, we list the number of adjancencies to lower-indexed nodes, to ! the node itself, to higher-indexed nodes, the total number of ! adjacencies for this node, and the location of the first and last ! entries required to list this set of adjacencies in a single list ! of all the adjacencies. ! ! N Below Self Above Total First Last ! ! -- -- -- -- -- --- 0 ! 1: 0 1 5 6 1 6 ! 2: 1 1 4 6 7 12 ! 3: 2 1 9 12 13 24 ! 4: 1 1 4 6 25 30 ! 5: 2 1 6 9 31 39 ! 6: 3 1 2 6 40 45 ! 7: 4 1 4 9 46 54 ! 8: 4 1 4 9 55 63 ! 9: 4 1 4 9 62 72 ! 10: 2 1 3 6 73 78 ! 11: 6 1 5 12 79 90 ! 12: 4 1 4 9 91 99 ! 13: 9 1 9 19 100 118 ! 14: 4 1 4 9 119 127 ! 15: 5 1 6 12 128 139 ! 16: 3 1 2 6 140 145 ! 17: 4 1 4 9 146 154 ! 18: 4 1 4 9 155 163 ! 19: 4 1 4 9 164 172 ! 20: 2 1 3 6 173 178 ! 21: 6 1 2 9 179 187 ! 22: 4 1 1 6 188 193 ! 23: 9 1 2 12 194 205 ! 24: 4 1 1 6 206 211 ! 25: 5 1 0 6 212 217 ! -- -- -- -- -- 218 --- ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 24 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Input, integer ( kind = 4 ) TRIANGLE_NODE(6,TRIANGLE_NUM), lists the nodes ! that make up each triangle. The first three nodes are the vertices, ! in counterclockwise order. The fourth value is the midside ! node between nodes 1 and 2; the fifth and sixth values are ! the other midside nodes in the logical order. ! ! Input, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), for each ! side of a triangle, lists the neighboring triangle, or -1 if there is ! no neighbor. ! ! Output, integer ( kind = 4 ) ADJ_NUM, the number of adjacencies. ! ! Output, integer ( kind = 4 ) ADJ_COL(NODE_NUM+1). Information about ! column J is stored in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. ! implicit none integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num integer ( kind = 4 ), parameter :: triangle_order = 6 integer ( kind = 4 ) adj_num integer ( kind = 4 ) adj_col(node_num+1) integer ( kind = 4 ) i integer ( kind = 4 ) n1 integer ( kind = 4 ) n2 integer ( kind = 4 ) n3 integer ( kind = 4 ) n4 integer ( kind = 4 ) n5 integer ( kind = 4 ) n6 integer ( kind = 4 ) triangle integer ( kind = 4 ) triangle2 integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) adj_num = 0 ! ! Set every node to be adjacent to itself. ! adj_col(1:node_num) = 1 ! ! Examine each triangle. ! do triangle = 1, triangle_num n1 = triangle_node(1,triangle) n2 = triangle_node(2,triangle) n3 = triangle_node(3,triangle) n4 = triangle_node(4,triangle) n5 = triangle_node(5,triangle) n6 = triangle_node(6,triangle) ! ! For sure, we add the adjacencies: ! 43 / (34) ! 51 / (15) ! 54 / (45) ! 62 / (26) ! 64 / (46) ! 65 / (56) ! adj_col(n3) = adj_col(n3) + 1 adj_col(n4) = adj_col(n4) + 1 adj_col(n1) = adj_col(n1) + 1 adj_col(n5) = adj_col(n5) + 1 adj_col(n4) = adj_col(n4) + 1 adj_col(n5) = adj_col(n5) + 1 adj_col(n2) = adj_col(n2) + 1 adj_col(n6) = adj_col(n6) + 1 adj_col(n4) = adj_col(n4) + 1 adj_col(n6) = adj_col(n6) + 1 adj_col(n5) = adj_col(n5) + 1 adj_col(n6) = adj_col(n6) + 1 ! ! Add edges (1,2), (1,4), (2,4) if this is the first occurrence, ! that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) ! or if this triangle is the first of the pair in which the edge ! occurs (TRIANGLE < TRIANGLE2). ! ! Maybe add ! 21 / 12 ! 41 / 14 ! 42 / 24 ! triangle2 = triangle_neighbor(1,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj_col(n1) = adj_col(n1) + 1 adj_col(n2) = adj_col(n2) + 1 adj_col(n1) = adj_col(n1) + 1 adj_col(n4) = adj_col(n4) + 1 adj_col(n2) = adj_col(n2) + 1 adj_col(n4) = adj_col(n4) + 1 end if ! ! Maybe add ! 32 / 23 ! 52 / 25 ! 53 / 35 ! triangle2 = triangle_neighbor(2,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj_col(n2) = adj_col(n2) + 1 adj_col(n3) = adj_col(n3) + 1 adj_col(n2) = adj_col(n2) + 1 adj_col(n5) = adj_col(n5) + 1 adj_col(n3) = adj_col(n3) + 1 adj_col(n5) = adj_col(n5) + 1 end if ! ! Maybe add ! 31 / 13 ! 61 / 16 ! 63 / 36 ! triangle2 = triangle_neighbor(3,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj_col(n1) = adj_col(n1) + 1 adj_col(n3) = adj_col(n3) + 1 adj_col(n1) = adj_col(n1) + 1 adj_col(n6) = adj_col(n6) + 1 adj_col(n3) = adj_col(n3) + 1 adj_col(n6) = adj_col(n6) + 1 end if end do ! ! We used ADJ_COL to count the number of entries in each column. ! Convert it to pointers into the ADJ array. ! adj_col(2:node_num+1) = adj_col(1:node_num) adj_col(1) = 1 do i = 2, node_num + 1 adj_col(i) = adj_col(i-1) + adj_col(i) end do adj_num = adj_col(node_num+1) - 1 return end subroutine triangulation_order6_adj_set ( node_num, triangle_num, & triangle_node, triangle_neighbor, adj_num, adj_col, adj ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER6_ADJ_SET sets adjacencies in a triangulation. ! ! Discussion: ! ! This routine is called to count the adjacencies, so that the ! appropriate amount of memory can be set aside for storage when ! the adjacency structure is created. ! ! The triangulation is assumed to involve 6-node triangles. ! ! Two nodes are "adjacent" if they are both nodes in some triangle. ! Also, a node is considered to be adjacent to itself. ! ! This routine can be used to create the compressed column storage ! for a quadratic triangle finite element discretization of ! Poisson's equation in two dimensions. ! ! Diagram: ! ! 3 ! s |\ ! i | \ ! d | \ ! e 6 5 side 2 ! | \ ! 3 | \ ! | \ ! 1---4---2 ! ! side 1 ! ! The local node numbering ! ! ! 21-22-23-24-25 ! |\ |\ | ! | \ | \ | ! 16 17 18 19 20 ! | \ | \ | ! | \| \| ! 11-12-13-14-15 ! |\ |\ | ! | \ | \ | ! 6 7 8 9 10 ! | \ | \ | ! | \| \| ! 1--2--3--4--5 ! ! A sample grid. ! ! ! Below, we have a chart that lists the nodes adjacent to each node, with ! an asterisk to indicate the adjacency of the node to itself ! (in some cases, you want to count this self adjacency and in some ! you don't). ! ! N Adjacencies ! ! 1: * 2 3 6 7 11 ! 2: 1 * 3 6 7 11 ! 3: 1 2 * 4 5 6 7 8 9 11 12 13 ! 4: 3 * 5 8 9 13 ! 5: 3 4 * 8 9 10 13 14 15 ! 6: 1 2 3 * 7 11 ! 7: 1 2 3 6 * 8 11 12 13 ! 8: 3 4 5 7 * 9 11 12 13 ! 9: 3 4 5 8 * 10 13 14 15 ! 10: 5 9 * 13 14 15 ! 11: 1 2 3 6 7 8 * 12 13 16 17 21 ! 12: 3 7 8 11 * 13 16 17 21 ! 13: 3 4 5 7 8 9 10 11 12 * 14 15 16 17 18 19 21 22 23 ! 14: 5 9 10 13 * 15 18 19 23 ! 15: 5 9 10 13 14 * 18 19 20 23 24 25 ! 16: 11 12 13 * 17 21 ! 17: 11 12 13 16 * 18 21 22 23 ! 18: 13 14 15 17 * 19 21 22 23 ! 19: 13 14 15 18 * 20 23 24 25 ! 20: 15 19 * 23 24 25 ! 21: 11 12 13 16 17 18 * 22 23 ! 22: 13 17 18 21 * 23 ! 23: 13 14 15 17 18 19 20 21 22 * 24 25 ! 24: 15 19 20 23 * 25 ! 25: 15 19 20 23 24 * ! ! Below, we list the number of adjancencies to lower-indexed nodes, to ! the node itself, to higher-indexed nodes, the total number of ! adjacencies for this node, and the location of the first and last ! entries required to list this set of adjacencies in a single list ! of all the adjacencies. ! ! N Below Self Above Total First Last ! ! -- -- -- -- -- --- 0 ! 1: 0 1 5 6 1 6 ! 2: 1 1 4 6 7 12 ! 3: 2 1 9 12 13 24 ! 4: 1 1 4 6 25 30 ! 5: 2 1 6 9 31 39 ! 6: 3 1 2 6 40 45 ! 7: 4 1 4 9 46 54 ! 8: 4 1 4 9 55 63 ! 9: 4 1 4 9 62 72 ! 10: 2 1 3 6 73 78 ! 11: 6 1 5 12 79 90 ! 12: 4 1 4 9 91 99 ! 13: 9 1 9 19 100 118 ! 14: 4 1 4 9 119 127 ! 15: 5 1 6 12 128 139 ! 16: 3 1 2 6 140 145 ! 17: 4 1 4 9 146 154 ! 18: 4 1 4 9 155 163 ! 19: 4 1 4 9 164 172 ! 20: 2 1 3 6 173 178 ! 21: 6 1 2 9 179 187 ! 22: 4 1 1 6 188 193 ! 23: 9 1 2 12 194 205 ! 24: 4 1 1 6 206 211 ! 25: 5 1 0 6 212 217 ! -- -- -- -- -- 218 --- ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 24 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Input, integer ( kind = 4 ) TRIANGLE_NODE(6,TRIANGLE_NUM), lists the nodes ! that make up each triangle. The first three nodes are the vertices, ! in counterclockwise order. The fourth value is the midside ! node between nodes 1 and 2; the fifth and sixth values are ! the other midside nodes in the logical order. ! ! Input, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), for each ! side of a triangle, lists the neighboring triangle, or -1 if there is ! no neighbor. ! ! Input, integer ( kind = 4 ) ADJ_NUM, the number of adjacencies. ! ! Input, integer ( kind = 4 ) ADJ_COL(NODE_NUM+1). Information about ! column J is stored in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. ! ! Output, integer ( kind = 4 ) ADJ(ADJ_NUM), the adjacency information. ! implicit none integer ( kind = 4 ) adj_num integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num integer ( kind = 4 ), parameter :: triangle_order = 6 integer ( kind = 4 ) adj(adj_num) integer ( kind = 4 ) adj_copy(node_num) integer ( kind = 4 ) adj_col(node_num+1) integer ( kind = 4 ) k1 integer ( kind = 4 ) k2 integer ( kind = 4 ) n1 integer ( kind = 4 ) n2 integer ( kind = 4 ) n3 integer ( kind = 4 ) n4 integer ( kind = 4 ) n5 integer ( kind = 4 ) n6 integer ( kind = 4 ) node integer ( kind = 4 ) triangle integer ( kind = 4 ) triangle2 integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) adj(1:adj_num) = -1 adj_copy(1:node_num) = adj_col(1:node_num) ! ! Set every node to be adjacent to itself. ! do node = 1, node_num adj(adj_copy(node)) = node adj_copy(node) = adj_copy(node) + 1 end do ! ! Examine each triangle. ! do triangle = 1, triangle_num n1 = triangle_node(1,triangle) n2 = triangle_node(2,triangle) n3 = triangle_node(3,triangle) n4 = triangle_node(4,triangle) n5 = triangle_node(5,triangle) n6 = triangle_node(6,triangle) ! ! For sure, we add the adjacencies: ! 43 / (34) ! 51 / (15) ! 54 / (45) ! 62 / (26) ! 64 / (46) ! 65 / (56) ! adj(adj_copy(n3)) = n4 adj_copy(n3) = adj_copy(n3) + 1 adj(adj_copy(n4)) = n3 adj_copy(n4) = adj_copy(n4) + 1 adj(adj_copy(n1)) = n5 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n5)) = n1 adj_copy(n5) = adj_copy(n5) + 1 adj(adj_copy(n4)) = n5 adj_copy(n4) = adj_copy(n4) + 1 adj(adj_copy(n5)) = n4 adj_copy(n5) = adj_copy(n5) + 1 adj(adj_copy(n2)) = n6 adj_copy(n2) = adj_copy(n2) + 1 adj(adj_copy(n6)) = n2 adj_copy(n6) = adj_copy(n6) + 1 adj(adj_copy(n4)) = n6 adj_copy(n4) = adj_copy(n4) + 1 adj(adj_copy(n6)) = n4 adj_copy(n6) = adj_copy(n6) + 1 adj(adj_copy(n5)) = n6 adj_copy(n5) = adj_copy(n5) + 1 adj(adj_copy(n6)) = n5 adj_copy(n6) = adj_copy(n6) + 1 ! ! Add edges (1,2), (1,4), (2,4) if this is the first occurrence, ! that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) ! or if this triangle is the first of the pair in which the edge ! occurs (TRIANGLE < TRIANGLE2). ! ! Maybe add ! 21 / 12 ! 41 / 14 ! 42 / 24 ! triangle2 = triangle_neighbor(1,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj(adj_copy(n1)) = n2 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n2)) = n1 adj_copy(n2) = adj_copy(n2) + 1 adj(adj_copy(n1)) = n4 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n4)) = n1 adj_copy(n4) = adj_copy(n4) + 1 adj(adj_copy(n2)) = n4 adj_copy(n2) = adj_copy(n2) + 1 adj(adj_copy(n4)) = n2 adj_copy(n4) = adj_copy(n4) + 1 end if ! ! Maybe add ! 32 / 23 ! 52 / 25 ! 53 / 35 ! triangle2 = triangle_neighbor(2,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj(adj_copy(n2)) = n3 adj_copy(n2) = adj_copy(n2) + 1 adj(adj_copy(n3)) = n2 adj_copy(n3) = adj_copy(n3) + 1 adj(adj_copy(n2)) = n5 adj_copy(n2) = adj_copy(n2) + 1 adj(adj_copy(n5)) = n2 adj_copy(n5) = adj_copy(n5) + 1 adj(adj_copy(n3)) = n5 adj_copy(n3) = adj_copy(n3) + 1 adj(adj_copy(n5)) = n3 adj_copy(n5) = adj_copy(n5) + 1 end if ! ! Maybe add ! 31 / 13 ! 61 / 16 ! 63 / 36 ! triangle2 = triangle_neighbor(3,triangle) if ( triangle2 < 0 .or. triangle < triangle2 ) then adj(adj_copy(n1)) = n3 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n3)) = n1 adj_copy(n3) = adj_copy(n3) + 1 adj(adj_copy(n1)) = n6 adj_copy(n1) = adj_copy(n1) + 1 adj(adj_copy(n6)) = n1 adj_copy(n6) = adj_copy(n6) + 1 adj(adj_copy(n3)) = n6 adj_copy(n3) = adj_copy(n3) + 1 adj(adj_copy(n6)) = n3 adj_copy(n6) = adj_copy(n6) + 1 end if end do ! ! Ascending sort the entries for each node. ! do node = 1, node_num k1 = adj_col(node) k2 = adj_col(node+1)-1 call i4vec_sort_heap_a ( k2+1-k1, adj(k1:k2) ) end do return end subroutine triangulation_order6_example2 ( node_num, triangle_num, node_xy, & triangle_node, triangle_neighbor ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER6_EXAMPLE2 returns an example triangulation. ! ! Discussion: ! ! This triangulation is actually a Delaunay triangulation. ! ! The appropriate input values of NODE_NUM and TRIANGLE_NUM can be ! determined by calling TRIANGULATION_ORDER6_EXAMPLE2_SIZE first. ! ! Diagram: ! ! 21-22-23-24-25 ! |\ 6 |\ 8 | ! | \ | \ | ! 16 17 18 19 20 ! | \ | \ | ! | 5 \| 7 \| ! 11-12-13-14-15 ! |\ 2 |\ 4 | ! | \ | \ | ! 6 7 8 9 10 ! | 1 \ | 3 \ | ! | \| \| ! 1--2--3--4--5 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Input, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Output, real ( kind = 8 ) NODE_XY(2,NODE_NUM), the coordinates of ! the nodes. ! ! Output, integer ( kind = 4 ) TRIANGLE_NODE(6,TRIANGLE_NUM), lists the ! nodes that make up each triangle. The first three nodes are the vertices, ! in counterclockwise order. The fourth value is the midside ! node between nodes 1 and 2; the fifth and sixth values are ! the other midside nodes in the logical order. ! ! Output, integer ( kind = 4 ) TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), for each ! side of a triangle, lists the neighboring triangle, or -1 if there is ! no neighbor. ! implicit none integer ( kind = 4 ), parameter :: dim_num = 2 integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num integer ( kind = 4 ), parameter :: triangle_order = 6 real ( kind = 8 ) node_xy(dim_num,node_num) integer ( kind = 4 ) triangle_neighbor(3,triangle_num) integer ( kind = 4 ) triangle_node(triangle_order,triangle_num) node_xy = reshape ( (/ & 0.0D+00, 0.0D+00, & 1.0D+00, 0.0D+00, & 2.0D+00, 0.0D+00, & 3.0D+00, 0.0D+00, & 4.0D+00, 0.0D+00, & 0.0D+00, 1.0D+00, & 1.0D+00, 1.0D+00, & 2.0D+00, 1.0D+00, & 3.0D+00, 1.0D+00, & 4.0D+00, 1.0D+00, & 0.0D+00, 2.0D+00, & 1.0D+00, 2.0D+00, & 2.0D+00, 2.0D+00, & 3.0D+00, 2.0D+00, & 4.0D+00, 2.0D+00, & 0.0D+00, 3.0D+00, & 1.0D+00, 3.0D+00, & 2.0D+00, 3.0D+00, & 3.0D+00, 3.0D+00, & 4.0D+00, 3.0D+00, & 0.0D+00, 4.0D+00, & 1.0D+00, 4.0D+00, & 2.0D+00, 4.0D+00, & 3.0D+00, 4.0D+00, & 4.0D+00, 4.0D+00 & /), (/ dim_num, node_num /) ) triangle_node(1:triangle_order,1:triangle_num) = reshape ( (/ & 1, 3, 11, 2, 7, 6, & 13, 11, 3, 12, 7, 8, & 3, 5, 13, 4, 9, 8, & 15, 13, 5, 14, 9, 10, & 11, 13, 21, 12, 17, 16, & 23, 21, 13, 22, 17, 18, & 13, 15, 23, 14, 19, 18, & 25, 23, 15, 24, 19, 20 /), (/ triangle_order, triangle_num /) ) triangle_neighbor(1:3,1:triangle_num) = reshape ( (/ & -1, 2, -1, & 5, 1, 3, & -1, 4, 2, & 7, 3, -1, & 2, 6, -1, & -1, 5, 7, & 4, 8, 6, & -1, 7, -1 /), (/ 3, triangle_num /) ) return end subroutine triangulation_order6_example2_size ( node_num, triangle_num, & hole_num ) !*****************************************************************************80 ! !! TRIANGULATION_ORDER6_EXAMPLE2_SIZE returns the size of an example. ! ! Diagram: ! ! 21-22-23-24-25 ! |\ 6 |\ 8 | ! | \ | \ | ! 16 17 18 19 20 ! | \ | \ | ! | 5 \| 7 \| ! 11-12-13-14-15 ! |\ 2 |\ 4 | ! | \ | \ | ! 6 7 8 9 10 ! | 1 \ | 3 \ | ! | \| \| ! 1--2--3--4--5 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Output, integer ( kind = 4 ) NODE_NUM, the number of nodes. ! ! Output, integer ( kind = 4 ) TRIANGLE_NUM, the number of triangles. ! ! Output, integer ( kind = 4 ) HOLE_NUM, the number of holes. ! implicit none integer ( kind = 4 ) hole_num integer ( kind = 4 ) node_num integer ( kind = 4 ) triangle_num node_num = 25 triangle_num = 8 hole_num = 0 return end