function i4_log_10 ( i ) !*****************************************************************************80 ! !! I4_LOG_10 returns the integer part of the logarithm base 10 of an I4. ! ! Discussion: ! ! I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. ! ! An I4 is an integer ( kind = 4 ) value. ! ! Example: ! ! I I4_LOG_10 ! ----- -------- ! 0 0 ! 1 0 ! 2 0 ! 9 0 ! 10 1 ! 11 1 ! 99 1 ! 100 2 ! 101 2 ! 999 2 ! 1000 3 ! 1001 3 ! 9999 3 ! 10000 4 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 08 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) I, the number whose logarithm base 10 ! is desired. ! ! Output, integer ( kind = 4 ) I4_LOG_10, the integer part of the ! logarithm base 10 of the absolute value of X. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) i_abs integer ( kind = 4 ) i4_log_10 integer ( kind = 4 ) ten_pow if ( i == 0 ) then i4_log_10 = 0 else i4_log_10 = 0 ten_pow = 10 i_abs = abs ( i ) do while ( ten_pow <= i_abs ) i4_log_10 = i4_log_10 + 1 ten_pow = ten_pow * 10 end do end if return end function r8_uniform_01 ( seed ) !*****************************************************************************80 ! !! R8_UNIFORM_01 returns a unit pseudorandom R8. ! ! Discussion: ! ! An R8 is a real ( kind = 8 ) value. ! ! For now, the input quantity SEED is an integer variable. ! ! This routine implements the recursion ! ! seed = 16807 * seed mod ( 2^31 - 1 ) ! r8_uniform_01 = seed / ( 2^31 - 1 ) ! ! The integer arithmetic never requires more than 32 bits, ! including a sign bit. ! ! If the initial seed is 12345, then the first three computations are ! ! Input Output R8_UNIFORM_01 ! SEED SEED ! ! 12345 207482415 0.096616 ! 207482415 1790989824 0.833995 ! 1790989824 2035175616 0.947702 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which should ! NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = 8 ) R8_UNIFORM_01, a new pseudorandom variate, ! strictly between 0 and 1. ! implicit none integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) k real ( kind = 8 ) r8_uniform_01 integer ( kind = 4 ) seed if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r8_uniform_01 = real ( seed, kind = 8 ) * 4.656612875D-10 return end subroutine r8ge_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8GE_PRINT prints an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer ( kind = 4 ) N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(M,N), the R8GE matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8ge_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ge_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GE_PRINT_SOME prints some of an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer ( kind = 4 ) N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(M,N), the R8GE matrix. ! ! Input, integer ( kind = 4 ) ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8ge_random ( m, n, seed, a ) !*****************************************************************************80 ! !! R8GE_RANDOM randomizes an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller, ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns in ! the array. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = 8 ) A(M,N), the array. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) integer ( kind = 4 ) i integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) seed do j = 1, n do i = 1, m k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if a(i,j) = real ( seed, kind = 8 ) * 4.656612875D-10 end do end do return end subroutine r8ge_to_r8ut ( m, n, a_ge, a_ut ) !*****************************************************************************80 ! !! R8GE_TO_R8UT copies an R8GE matrix to an R8UT matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns of ! the matrix. ! ! Input, real ( kind = 8 ) A_GE(N), the R8GE matrix. ! ! Output, real ( kind = 8 ) A_UT(N), the R8UT matrix. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a_ge(m,n) real ( kind = 8 ) a_ut(m,n) integer ( kind = 4 ) i integer ( kind = 4 ) j a_ut(1:m,1:n) = 0.0D+00 do j = 1, n do i = 1, min ( j, m ) a_ut(i,j) = a_ge(i,j) end do end do return end subroutine r8ut_det ( n, a, det ) !*****************************************************************************80 ! !! R8UT_DET computes the determinant of an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(N,N), the R8UT matrix. ! ! Output, real ( kind = 8 ) DET, the determinant of the matrix. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n,n) real ( kind = 8 ) det integer ( kind = 4 ) i det = 1.0D+00 do i = 1, n det = det * a(i,i) end do return end subroutine r8ut_indicator ( m, n, a ) !*****************************************************************************80 ! !! R8UT_INDICATOR sets up an R8UT indicator matrix. ! ! Discussion: ! ! The "indicator matrix" simply has a value like I*10+J at every ! entry of a dense matrix, or at every entry of a compressed storage ! matrix for which storage is allocated. ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns of ! the matrix. M and N must be positive. ! ! Output, real ( kind = 8 ) A(M,N), the R8UT matrix. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) integer ( kind = 4 ) fac integer ( kind = 4 ) i integer ( kind = 4 ) i4_log_10 integer ( kind = 4 ) j fac = 10 ** ( i4_log_10 ( n ) + 1 ) do i = 1, m do j = 1, min ( i-1, n ) a(i,j) = 0.0D+00 end do do j = i, n a(i,j) = real ( fac * i + j, kind = 8 ) end do end do return end subroutine r8ut_inverse ( n, a ) !*****************************************************************************80 ! !! R8UT_INVERSE computes the inverse of an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6 ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrix. ! ! Input/output, real ( kind = 8 ) A(N,N). ! On input, the upper triangular matrix to be inverted. ! On output, the inverse of the upper triangular matrix. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n,n) integer ( kind = 4 ) i integer ( kind = 4 ) j ! ! Check. ! do i = 1, n if ( a(i,i) == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8UT_INVERSE - Fatal error!' write ( *, '(a)' ) ' Zero diagonal element.' stop 1 end if end do do j = n, 1, -1 do i = n, 1, -1 if ( j < i ) then a(i,j) = 0.0D+00 else if ( i == j ) then a(i,j) = 1.0D+00 / a(i,j) else if ( i < j ) then a(i,j) = - sum ( a(i,i+1:j) * a(i+1:j,j) ) / a(i,i) end if end do end do return end subroutine r8ut_mm ( n, a, b, c ) !*****************************************************************************80 ! !! R8UT_MM computes C = A * B, where A and B are R8UT matrices. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! The product C will also be an upper trangular matrix. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrices. ! N must be positive. ! ! Input, real ( kind = 8 ) A(N,N), B(N,N), the factors. ! ! Output, real ( kind = 8 ) C(N,N), the product. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n,n) real ( kind = 8 ) b(n,n) real ( kind = 8 ) c(n,n) integer ( kind = 4 ) i integer ( kind = 4 ) j do i = 1, n do j = 1, i - 1 c(i,j) = 0.0D+00 end do do j = i, n c(i,j) = sum ( a(i,i:j) * b(i:j,j) ) end do end do return end subroutine r8ut_mtm ( n, a, b, c ) !*****************************************************************************80 ! !! R8UT_MTM computes C = A' * B, where A and B are R8UT matrices. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! The product C will NOT be an R8UT matrix. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 September 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrices. ! N must be positive. ! ! Input, real ( kind = 8 ) A(N,N), B(N,N), the factors. ! ! Output, real ( kind = 8 ) C(N,N), the product. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n,n) real ( kind = 8 ) b(n,n) real ( kind = 8 ) c(n,n) integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k_hi do i = 1, n do j = 1, n k_hi = min ( i, j ) c(i,j) = sum ( a(1:k_hi,i) * b(1:k_hi,j) ) end do end do return end subroutine r8ut_mtv ( m, n, a, x, b ) !*****************************************************************************80 ! !! R8UT_MTV multiplies an R8VEC by an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer ( kind = 4 ) N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(M,N), the R8UT matrix. ! ! Input, real ( kind = 8 ) X(M), the vector to be multiplied by A. ! ! Output, real ( kind = 8 ) B(N), the product A' * x. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) real ( kind = 8 ) b(n) integer ( kind = 4 ) i integer ( kind = 4 ) jhi real ( kind = 8 ) x(m) do i = 1, n jhi = min ( i, m ) b(i) = sum ( x(1:jhi) * a(1:jhi,i) ) end do return end subroutine r8ut_mv ( m, n, a, x, b ) !*****************************************************************************80 ! !! R8UT_MV multiplies an R8UT matrix by an R8VEC. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer ( kind = 4 ) N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(M,N), the R8UT matrix. ! ! Input, real ( kind = 8 ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = 8 ) B(M), the product A * x. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) real ( kind = 8 ) b(m) integer ( kind = 4 ) i real ( kind = 8 ) x(n) do i = 1, m b(i) = sum ( a(i,i:n) * x(i:n) ) end do return end subroutine r8ut_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8UT_PRINT prints an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer ( kind = 4 ) N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(M,N), the R8UT matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8ut_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ut_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8UT_PRINT_SOME prints some of an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer ( kind = 4 ) N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = 8 ) A(M,N), the R8UT matrix. ! ! Input, integer ( kind = 4 ) ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! 1 <= ILO <= IHI <= M. ! 1 <= JLO <= JHI <= N. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '(a,5a14)' ) ' Col: ', ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 if ( j < i ) then ctemp(j2) = ' ' else write ( ctemp(j2), '(g14.6)' ) a(i,j) end if end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8ut_random ( m, n, seed, a ) !*****************************************************************************80 ! !! R8UT_RANDOM randomizes an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns of ! the matrix. M and N must be positive. ! ! Input/output, integer ( kind = 4 ) SEED, a seed for the random number ! generator. ! ! Output, real ( kind = 8 ) A(M,N), the R8UT matrix. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) real ( kind = 8 ) r8_uniform_01 integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) seed a(1:m,1:n) = 0.0D+00 do j = 1, n do i = 1, min ( j, m ) a(i,j) = r8_uniform_01 ( seed ) end do end do return end subroutine r8ut_sl ( n, a, b, x ) !*****************************************************************************80 ! !! R8UT_SL solves a linear system A*x=b with A an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! No factorization of the upper triangular matrix is required. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrix. ! ! Input, real ( kind = 8 ) A(N,N), the R8UT matrix. ! ! Input, real ( kind = 8 ) B(N), the right hand side. ! ! Output, real ( kind = 8 ) X(N), the solution vector. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n,n) real ( kind = 8 ) b(n) integer ( kind = 4 ) j real ( kind = 8 ) x(n) x(1:n) = b(1:n) do j = n, 1, -1 x(j) = x(j) / a(j,j) x(1:j-1) = x(1:j-1) - a(1:j-1,j) * x(j) end do return end subroutine r8ut_slt ( n, a, b, x ) !*****************************************************************************80 ! !! R8UT_SLT solves a transposed linear system A'*x=b with A an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! No factorization of the upper triangular matrix is required. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the order of the matrix. ! ! Input, real ( kind = 8 ) A(N,N), the R8UT matrix. ! ! Input, real ( kind = 8 ) B(N), the right hand side. ! ! Output, real ( kind = 8 ) X(N), the solution vector. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n,n) real ( kind = 8 ) b(n) integer ( kind = 4 ) j real ( kind = 8 ) x(n) x(1:n) = b(1:n) do j = 1, n x(j) = x(j) / a(j,j) x(j+1:n) = x(j+1:n) - a(j,j+1:n) * x(j) end do return end subroutine r8ut_to_r8ge ( m, n, a_ut, a_ge ) !*****************************************************************************80 ! !! R8UT_TO_R8GE copies an R8UT matrix to an R8GE matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 August 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns of ! the matrix. ! ! Input, real ( kind = 8 ) A_UT(N), the R8UT matrix. ! ! Output, real ( kind = 8 ) A_GE(N), the R8GE matrix. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a_ge(m,n) real ( kind = 8 ) a_ut(m,n) integer ( kind = 4 ) i integer ( kind = 4 ) j a_ge(1:m,1:n) = 0.0D+00 do j = 1, n do i = 1, min ( j, m ) a_ge(i,j) = a_ut(i,j) end do end do return end subroutine r8ut_zeros ( m, n, a ) !*****************************************************************************80 ! !! R8UT_ZEROS zeroes an R8UT matrix. ! ! Discussion: ! ! The R8UT storage format is used for an M by N upper triangular ! matrix. The format stores all M*N entries, even those which are zero. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 January 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns of ! the matrix. M and N must be positive. ! ! Output, real ( kind = 8 ) A(M,N), the R8UT matrix. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) a(1:m,1:n) = 0.0D+00 return end subroutine r8vec_indicator1 ( n, a ) !*****************************************************************************80 ! !! R8VEC_INDICATOR1 sets an R8VEC to the indicator1 vector. ! ! Discussion: ! ! A(1:N) = (/ 1 : N /) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of elements of A. ! ! Output, real ( kind = 8 ) A(N), the array to be initialized. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n) integer ( kind = 4 ) i do i = 1, n a(i) = real ( i, kind = 8 ) end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, real ( kind = 8 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n) integer ( kind = 4 ) i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end subroutine r8vec_uniform_01 ( n, seed, r ) !*****************************************************************************80 ! !! R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of real ( kind = 8 ) values. ! ! For now, the input quantity SEED is an integer ( kind = 4 ) variable. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries ! in the vector. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = 8 ) R(N), the vector of pseudorandom values. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) k integer ( kind = 4 ) seed real ( kind = 8 ) r(n) if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if r(i) = real ( seed, kind = 8 ) * 4.656612875D-10 end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end