5 February 2008 4:07:28.403 PM INT_EXACTNESS_GEN_HERMITE_R16 FORTRAN90 version Investigate the polynomial exactness of a generalized Gauss-Hermite quadrature rule by integrating exponentially weighted monomials up to a given degree over the (-oo,oo) interval. INT_EXACTNESS_GEN_HERMITE_R16: User input: Quadrature rule X file = "gen_herm_o8_a1.0_modified_x.txt". Quadrature rule W file = "gen_herm_o8_a1.0_modified_w.txt". Quadrature rule R file = "gen_herm_o8_a1.0_modified_r.txt". Maximum degree to check = 18 Weighting function exponent ALPHA = 1.00000 OPTION = 1, integrate f(x). Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a generalized Gauss-Hermite rule ORDER = 8 ALPHA = 1.00000 OPTION = 1, modified rule: Integral ( -oo < x < oo ) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 1.058214197948879 w( 2) = 0.8524080381127395 w( 3) = 0.7750492008314336 w( 4) = 0.7331317124710707 w( 5) = 0.7331317124710707 w( 6) = 0.7750492008314336 w( 7) = 0.8524080381127395 w( 8) = 1.058214197948879 Abscissas X: x( 1) = -3.065137992375079 x( 2) = -2.129934340988268 x( 3) = -1.321272530993643 x( 4) = -0.5679328213965031 x( 5) = 0.5679328213965031 x( 6) = 1.321272530993643 x( 7) = 2.129934340988268 x( 8) = 3.065137992375079 Region R: r( 1) = -0.1000000000000000E+31 r( 2) = 0.1000000000000000E+31 A generalized Gauss-Hermite rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree Exponents 0.3509613310192469 0 0.0000000000000000 1 0.1007197829162300 2 0.0000000000000000 3 0.3368935751647737 4 0.0000000000000000 5 0.4457506406748965 6 0.0000000000000000 7 0.5154815743951106 8 0.0000000000000000 9 0.5637244953151181 10 0.0000000000000000 11 0.6002504831543153 12 0.0000000000000000 13 0.6285292423738574 14 0.0000000000000000 15 0.6532936968622702 16 0.0000000000000000 17 0.6824237353843726 18 INT_EXACTNESS_GEN_HERMITE_R16: Normal end of execution. 5 February 2008 4:07:28.409 PM