program main !*****************************************************************************80 ! !! MAIN is the main program for PRODUCT_RULE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 13 May 2007 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ) arg_num integer ( kind = 4 ) dim integer ( kind = 4 ) dim_num integer ( kind = 4 ) dim_num_1d integer ( kind = 4 ) iarg integer ( kind = 4 ) iargc integer ( kind = 4 ) ierror integer ( kind = 4 ) ios integer ( kind = 4 ) last character ( len = 255 ) list_filename integer ( kind = 4 ) list_num integer ( kind = 4 ) list_unit logical more integer ( kind = 4 ) point_num integer ( kind = 4 ) point_num_1d integer ( kind = 4 ) point_num_1d2 character ( len = 255 ) quad_1d_filename character ( len = 255 ) quad_filename character ( len = 255 ) quad_r_filename character ( len = 255 ) quad_r_1d_filename character ( len = 255 ) quad_w_filename character ( len = 255 ) quad_w_1d_filename character ( len = 255 ) quad_x_filename character ( len = 255 ) quad_x_1d_filename real ( kind = 8 ), allocatable, dimension ( :, : ) :: r real ( kind = 8 ), allocatable, dimension ( : ) :: r_1d character ( len = 255 ) string real ( kind = 8 ), allocatable, dimension ( : ) :: w real ( kind = 8 ), allocatable, dimension ( : ) :: w_1d real ( kind = 8 ), allocatable, dimension ( :, : ) :: x real ( kind = 8 ), allocatable, dimension ( : ) :: x_1d call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Create a multidimensional product rule' write ( *, '(a)' ) ' as a product of distinct 1D integration rules.' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! Get the list file. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, list_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE:' write ( *, '(a)' ) ' Enter the name of the file listing the factors.' read ( *, '(a)' ) list_filename end if ! ! Get the product file prefix. ! if ( 2 <= arg_num ) then iarg = 2 call getarg ( iarg, quad_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE:' write ( *, '(a)' ) ' Enter the prefix to be used for the output files' write ( *, '(a)' ) ' describing the product rule.' read ( *, '(a)' ) quad_filename end if ! ! Count the items in the list file. ! call file_row_count ( list_filename, list_num ) ! ! Determine the spatial dimension and number of points in the product. ! dim_num = list_num call product_rule_size ( list_filename, list_num, point_num ) ! ! Allocate the product items. ! allocate ( x(dim_num,point_num) ) allocate ( w(point_num) ) allocate ( r(dim_num,2) ) x(1:dim_num,1:point_num) = 0.0D+00 w(1:point_num) = 1.0D+00 r(1:dim_num,1:2) = 0.0D+00 call get_unit ( list_unit ) open ( unit = list_unit, file = list_filename, status = 'old', & iostat = ios ) if ( ios /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' Nonzero value of IOS while opening list file.' stop end if ! ! Read the factor information and apply it. ! do dim = 1, dim_num read ( list_unit, '(a)' ) quad_1d_filename quad_x_1d_filename = trim ( quad_1d_filename ) // '_x.txt' quad_w_1d_filename = trim ( quad_1d_filename ) // '_w.txt' quad_r_1d_filename = trim ( quad_1d_filename ) // '_r.txt' ! ! Read the X file. ! call r8mat_header_read ( quad_x_1d_filename, dim_num_1d, point_num_1d ) if ( dim_num_1d /= 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature abscissa file should have exactly' write ( *, '(a)' ) ' one value on each line.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Number of points in 1D rule = ', point_num_1d allocate ( x_1d(point_num_1d) ) call r8mat_data_read ( quad_x_1d_filename, dim_num_1d, point_num_1d, x_1d ) ! ! Read the W file. ! call r8mat_header_read ( quad_w_1d_filename, dim_num_1d, point_num_1d2 ) if ( dim_num_1d /= 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature weight file should have exactly' write ( *, '(a)' ) ' one value on each line.' stop end if if ( point_num_1d2 /= point_num_1d ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature weight file should have exactly' write ( *, '(a)' ) ' the same number of lines as the abscissa file.' stop end if allocate ( w_1d(point_num_1d) ) call r8mat_data_read ( quad_w_1d_filename, dim_num_1d, point_num_1d, & w_1d ) ! ! Read the R file. ! call r8mat_header_read ( quad_r_1d_filename, dim_num_1d, point_num_1d2 ) if ( dim_num_1d /= 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature region file should have exactly' write ( *, '(a)' ) ' one value on each line.' stop end if if ( point_num_1d2 /= 2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature region file should have exactly' write ( *, '(a)' ) ' two lines.' stop end if allocate ( r_1d(2) ) call r8mat_data_read ( quad_r_1d_filename, 1, 2, r_1d ) ! ! Update the X, W, and R of the product rule. ! call r8vec_direct_product ( dim, point_num_1d, x_1d, dim_num, point_num, x ) call r8vec_direct_product2 ( dim, point_num_1d, w_1d, dim_num, & point_num, w ) r(dim,1) = r_1d(1) r(dim,2) = r_1d(2) deallocate ( x_1d ) deallocate ( w_1d ) deallocate ( r_1d ) end do close ( unit = list_unit ) ! ! Write the product rule. ! quad_x_filename = trim ( quad_filename ) // '_x.txt' quad_w_filename = trim ( quad_filename ) // '_w.txt' quad_r_filename = trim ( quad_filename ) // '_r.txt' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Creating product quadrature rule X file = "' & // trim ( quad_x_filename ) // '".' call r8mat_write ( quad_x_filename, dim_num, point_num, x ) write ( *, '(a)' ) ' Creating product quadrature rule W file = "' & // trim ( quad_w_filename ) // '".' call r8mat_write ( quad_w_filename, 1, point_num, w ) write ( *, '(a)' ) ' Creating product quadrature rule R file = "' & // trim ( quad_r_filename ) // '".' call r8mat_write ( quad_r_filename, dim_num, 2, r ) ! ! Free memory. ! deallocate ( w ) deallocate ( x ) deallocate ( r ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULES:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( c ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character C, the character to capitalize. ! implicit none character c integer ( kind = 4 ) itemp itemp = ichar ( c ) if ( 97 <= itemp .and. itemp <= 122 ) then c = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer ( kind = 4 ) DIGIT, the corresponding value. ! If C was 'illegal', then DIGIT is -1. ! implicit none character c integer ( kind = 4 ) digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_file_name, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the file. ! ! Output, integer ( kind = 4 ) COLUMN_NUM, the number of columns in the file. ! implicit none integer ( kind = 4 ) column_num logical got_one character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & form = 'formatted', access = 'sequential', iostat = input_status ) if ( input_status /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' & // trim ( input_file_name ) // '" on unit ', input_unit return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_file_name, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the input file. ! ! Output, integer ( kind = 4 ) ROW_NUM, the number of rows found. ! implicit none integer ( kind = 4 ) bad_num integer ( kind = 4 ) comment_num integer ( kind = 4 ) ierror character ( len = * ) input_file_name integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit character ( len = 255 ) line integer ( kind = 4 ) record_num integer ( kind = 4 ) row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_file_name ) // '" on unit ', input_unit stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 26 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer ( kind = 4 ) IUNIT, the free unit number. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) ios integer ( kind = 4 ) iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine product_rule_size ( list_filename, list_num, point_num ) !*****************************************************************************80 ! !! PRODUCT_RULE_SIZE returns the size of a product rule of distinct factors. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 10 May 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) LIST_FILENAME, a file containing a list ! of prefixes defining quadrature rules. ! ! Input, integer LIST_NUM, the number of prefixes in the file. ! ! Output, integer POINT_NUM, the number of points in the product rule. ! implicit none integer ( kind = 4 ) dim_num_1d integer ( kind = 4 ) ios integer ( kind = 4 ) list character ( len = * ) list_filename integer ( kind = 4 ) list_num integer ( kind = 4 ) list_unit integer ( kind = 4 ) point_num integer ( kind = 4 ) point_num_1d character ( len = 80 ) quad_1d_filename character ( len = 80 ) quad_x_1d_filename point_num = 1 call get_unit ( list_unit ) open ( unit = list_unit, file = list_filename, status = 'old', & iostat = ios ) if ( ios /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE_SIZE - Fatal error!' write ( *, '(a)' ) ' Nonzero value of IOS while opening list file.' stop end if do list = 1, list_num read ( list_unit, '(a)' ) quad_1d_filename quad_x_1d_filename = trim ( quad_1d_filename ) // '_x.txt' call r8mat_header_read ( quad_x_1d_filename, dim_num_1d, point_num_1d ) point_num = point_num * point_num_1d end do close ( unit = list_unit ) return end subroutine r8mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Output, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) ierror character ( len = * ) input_filename integer ( kind = 4 ) input_status integer ( kind = 4 ) input_unit integer ( kind = 4 ) j character ( len = 255 ) line real ( kind = 8 ) table(m,n) real ( kind = 8 ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ( kind = 4 ) M, spatial dimension. ! ! Output, integer ( kind = 4 ) N, the number of points. ! implicit none character ( len = * ) input_filename integer ( kind = 4 ) m integer ( kind = 4 ) n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer ( kind = 4 ) M, the spatial dimension. ! ! Input, integer ( kind = 4 ) N, the number of points. ! ! Input, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) j character ( len = * ) output_filename integer ( kind = 4 ) output_status integer ( kind = 4 ) output_unit character ( len = 30 ) string real ( kind = 8 ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! ! For less precision in the output file, try: ! ! '(', m, 'g', 14, '.', 6, ')' ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 24, '.', 16, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine r8vec_direct_product ( factor_index, factor_order, factor_value, & factor_num, point_num, x ) !*****************************************************************************80 ! !! R8VEC_DIRECT_PRODUCT creates a direct product of R8VEC's. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! To explain what is going on here, suppose we had to construct ! a multidimensional quadrature rule as the product of K rules ! for 1D quadrature. ! ! The product rule will be represented as a list of points and weights. ! ! The J-th item in the product rule will be associated with ! item J1 of 1D rule 1, ! item J2 of 1D rule 2, ! ..., ! item JK of 1D rule K. ! ! In particular, ! X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) ! and ! W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) ! ! So we can construct the quadrature rule if we can properly ! distribute the information in the 1D quadrature rules. ! ! This routine carries out that task for the abscissas X. ! ! Another way to do this would be to compute, one by one, the ! set of all possible indices (J1,J2,...,JK), and then index ! the appropriate information. An advantage of the method shown ! here is that you can process the K-th set of information and ! then discard it. ! ! Example: ! ! Rule 1: ! Order = 4 ! X(1:4) = ( 1, 2, 3, 4 ) ! ! Rule 2: ! Order = 3 ! X(1:3) = ( 10, 20, 30 ) ! ! Rule 3: ! Order = 2 ! X(1:2) = ( 100, 200 ) ! ! Product Rule: ! Order = 24 ! X(1:24) = ! ( 1, 10, 100 ) ! ( 2, 10, 100 ) ! ( 3, 10, 100 ) ! ( 4, 10, 100 ) ! ( 1, 20, 100 ) ! ( 2, 20, 100 ) ! ( 3, 20, 100 ) ! ( 4, 20, 100 ) ! ( 1, 30, 100 ) ! ( 2, 30, 100 ) ! ( 3, 30, 100 ) ! ( 4, 30, 100 ) ! ( 1, 10, 200 ) ! ( 2, 10, 200 ) ! ( 3, 10, 200 ) ! ( 4, 10, 200 ) ! ( 1, 20, 200 ) ! ( 2, 20, 200 ) ! ( 3, 20, 200 ) ! ( 4, 20, 200 ) ! ( 1, 30, 200 ) ! ( 2, 30, 200 ) ! ( 3, 30, 200 ) ! ( 4, 30, 200 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 April 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) FACTOR_INDEX, the index of the factor being ! processed. The first factor processed must be factor 1! ! ! Input, integer ( kind = 4 ) FACTOR_ORDER, the order of the factor. ! ! Input, real ( kind = 8 ) FACTOR_VALUE(FACTOR_ORDER), the factor values ! for factor FACTOR_INDEX. ! ! Input, integer ( kind = 4 ) FACTOR_NUM, the number of factors. ! ! Input, integer ( kind = 4 ) POINT_NUM, the number of elements in the ! direct product. ! ! Input/output, real ( kind = 8 ) X(FACTOR_NUM,POINT_NUM), the elements of ! the direct product, which are built up gradually. ! ! Local Parameters: ! ! Local, integer START, the first location of a block of values to set. ! ! Local, integer CONTIG, the number of consecutive values to set. ! ! Local, integer SKIP, the distance from the current value of START ! to the next location of a block of values to set. ! ! Local, integer REP, the number of blocks of values to set. ! implicit none integer ( kind = 4 ) factor_num integer ( kind = 4 ) factor_order integer ( kind = 4 ) point_num integer ( kind = 4 ), save :: contig integer ( kind = 4 ) factor_index real ( kind = 8 ) factor_value(factor_order) integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ), save :: rep integer ( kind = 4 ), save :: skip integer ( kind = 4 ) start real ( kind = 8 ) x(factor_num,point_num) if ( factor_index == 1 ) then contig = 1 skip = 1 rep = point_num x(1:factor_num,1:point_num) = 0.0D+00 end if rep = rep / factor_order skip = skip * factor_order do j = 1, factor_order start = 1 + ( j - 1 ) * contig do k = 1, rep x(factor_index,start:start+contig-1) = factor_value(j) start = start + skip end do end do contig = contig * factor_order return end subroutine r8vec_direct_product2 ( factor_index, factor_order, factor_value, & factor_num, point_num, w ) !*****************************************************************************80 ! !! R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! To explain what is going on here, suppose we had to construct ! a multidimensional quadrature rule as the product of K rules ! for 1D quadrature. ! ! The product rule will be represented as a list of points and weights. ! ! The J-th item in the product rule will be associated with ! item J1 of 1D rule 1, ! item J2 of 1D rule 2, ! ..., ! item JK of 1D rule K. ! ! In particular, ! X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) ! and ! W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) ! ! So we can construct the quadrature rule if we can properly ! distribute the information in the 1D quadrature rules. ! ! This routine carries out the task involving the weights W. ! ! Another way to do this would be to compute, one by one, the ! set of all possible indices (J1,J2,...,JK), and then index ! the appropriate information. An advantage of the method shown ! here is that you can process the K-th set of information and ! then discard it. ! ! Example: ! ! Rule 1: ! Order = 4 ! W(1:4) = ( 2, 3, 5, 7 ) ! ! Rule 2: ! Order = 3 ! W(1:3) = ( 11, 13, 17 ) ! ! Rule 3: ! Order = 2 ! W(1:2) = ( 19, 23 ) ! ! Product Rule: ! Order = 24 ! W(1:24) = ! ( 2 * 11 * 19 ) ! ( 3 * 11 * 19 ) ! ( 4 * 11 * 19 ) ! ( 7 * 11 * 19 ) ! ( 2 * 13 * 19 ) ! ( 3 * 13 * 19 ) ! ( 5 * 13 * 19 ) ! ( 7 * 13 * 19 ) ! ( 2 * 17 * 19 ) ! ( 3 * 17 * 19 ) ! ( 5 * 17 * 19 ) ! ( 7 * 17 * 19 ) ! ( 2 * 11 * 23 ) ! ( 3 * 11 * 23 ) ! ( 5 * 11 * 23 ) ! ( 7 * 11 * 23 ) ! ( 2 * 13 * 23 ) ! ( 3 * 13 * 23 ) ! ( 5 * 13 * 23 ) ! ( 7 * 13 * 23 ) ! ( 2 * 17 * 23 ) ! ( 3 * 17 * 23 ) ! ( 5 * 17 * 23 ) ! ( 7 * 17 * 23 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 April 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) FACTOR_INDEX, the index of the factor being ! processed. The first factor processed must be factor 1! ! ! Input, integer ( kind = 4 ) FACTOR_ORDER, the order of the factor. ! ! Input, real ( kind = 8 ) FACTOR_VALUE(FACTOR_ORDER), the factor values ! for factor FACTOR_INDEX. ! ! Input, integer ( kind = 4 ) FACTOR_NUM, the number of factors. ! ! Input, integer ( kind = 4 ) POINT_NUM, the number of elements in the ! direct product. ! ! Input/output, real ( kind = 8 ) W(POINT_NUM), the elements of the ! direct product, which are built up gradually. ! ! Local Parameters: ! ! Local, integer ( kind = 4 ) START, the first location of a block of values ! to set. ! ! Local, integer ( kind = 4 ) CONTIG, the number of consecutive values ! to set. ! ! Local, integer SKIP, the distance from the current value of START ! to the next location of a block of values to set. ! ! Local, integer REP, the number of blocks of values to set. ! implicit none integer ( kind = 4 ) factor_num integer ( kind = 4 ) factor_order integer ( kind = 4 ) point_num integer ( kind = 4 ), save :: contig integer ( kind = 4 ) factor_index real ( kind = 8 ) factor_value(factor_order) integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ), save :: rep integer ( kind = 4 ), save :: skip integer ( kind = 4 ) start real ( kind = 8 ) w(point_num) if ( factor_index == 1 ) then contig = 1 skip = 1 rep = point_num w(1:point_num) = 1.0D+00 end if rep = rep / factor_order skip = skip * factor_order do j = 1, factor_order start = 1 + ( j - 1 ) * contig do k = 1, rep w(start:start+contig-1) = w(start:start+contig-1) * factor_value(j) start = start + skip end do end do contig = contig * factor_order return end subroutine s_to_i4 ( s, ival, ierror, length ) !*****************************************************************************80 ! !! S_TO_I4 reads an I4 from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, a string to be examined. ! ! Output, integer IVAL, the integer value read from the string. ! If the string is blank, then IVAL will be returned 0. ! ! Output, integer IERROR, an error flag. ! 0, no error. ! 1, an error occurred. ! ! Output, integer LENGTH, the number of characters of S used to make IVAL. ! implicit none character c integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) isgn integer ( kind = 4 ) istate integer ( kind = 4 ) ival integer ( kind = 4 ) length character ( len = * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) ! ! Haven't read anything. ! if ( istate == 0 ) then if ( c == ' ' ) then else if ( c == '-' ) then istate = 1 isgn = -1 else if ( c == '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read the sign, expecting digits. ! else if ( istate == 1 ) then if ( c == ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read at least one digit, expecting more. ! else if ( istate == 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do ! ! If we read all the characters in the string, see if we're OK. ! if ( istate == 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = 8 ) DVAL, the value read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none logical ch_eqi character c real ( kind = 8 ) dval integer ( kind = 4 ) ierror integer ( kind = 4 ) ihave integer ( kind = 4 ) isgn integer ( kind = 4 ) iterm integer ( kind = 4 ) jbot integer ( kind = 4 ) jsgn integer ( kind = 4 ) jtop integer ( kind = 4 ) length integer ( kind = 4 ) nchar integer ( kind = 4 ) ndig real ( kind = 8 ) rbot real ( kind = 8 ) rexp real ( kind = 8 ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length+1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = 8 ) & / real ( jbot, kind = 8 ) ) end if end if dval = real ( isgn, kind = 8 ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer N, the number of values expected. ! ! Output, real ( kind = 8 ) RVEC(N), the values read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ) ierror integer ( kind = 4 ) ilo integer ( kind = 4 ) lchar real ( kind = 8 ) rvec(n) character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none logical blank integer ( kind = 4 ) i integer ( kind = 4 ) lens integer ( kind = 4 ) nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! May 31 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 May 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d character ( len = 8 ) date integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s character ( len = 10 ) time integer ( kind = 4 ) values(8) integer ( kind = 4 ) y character ( len = 5 ) zone call date_and_time ( date, time, zone, values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(a,1x,i2,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & trim ( month(m) ), d, y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end