program main !*****************************************************************************80 ! !! MAIN is the main program for PITCON7_PRB1. ! ! Discussion: ! ! PITCON66_PRB1 tests the PITCON library. ! ! This example treats a system based on the Freudenstein-Roth function. ! ! The function F(X) is of the form ! ! FX(1) = X1 - X2**3 + 5*X2**2 - 2*X2 - 13 + 34*(X3-1) ! FX(2) = X1 + X2**3 + X2**2 - 14*X2 - 29 + 10*(X3-1) ! ! Starting from the point (15,-2,0), the program is required to produce ! solution points along the curve until it reaches a solution point ! (*,*,1). It also may be requested to look for limit points in the ! first or third components. ! ! The correct value of the solution at X3=1 is (5,4,1). ! ! Limit points in the first variable occur at: ! ! (14.28309, -1.741377, 0.2585779) ! (61.66936, 1.983801, -0.6638797) ! ! Limit points for the third variable occur at: ! ! (20.48586, -0.8968053, 0.5875873) ! (61.02031, 2.230139, -0.6863528) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 12 November 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! F Freudenstein, B Roth, ! Numerical Solutions of Nonlinear Equations, ! Journal of the Association for Computing Machinery, ! Volume 10, 1963, Pages 550-556. ! implicit none integer, parameter :: nvar = 3 integer, parameter :: liw = nvar + 29 integer, parameter :: lrw = 29 + ( 6 + nvar ) * nvar external dfroth external dge_slv double precision fpar(1) external fxroth integer i integer ierror integer ipar(1) integer iwork(liw) integer j character ( len = 12 ) name double precision rwork(lrw) double precision xr(nvar) call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PITCON7_PRB1:' write ( *, '(a)' ) ' FORTRAN90 version.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' PITCON test problem' write ( *, '(a)' ) ' Freudenstein-Roth function' ! ! Set work arrays to zero: ! iwork(1:liw) = 0 rwork(1:lrw) = 0.0D+00 ! ! Set some entries of work arrays. ! ! IWORK(1)=0 ; This is a startup ! IWORK(2)=2 ; Use X(2) for initial parameter ! IWORK(3)=0 ; Program may choose parameter index ! IWORK(4)=0 ; Update jacobian every newton step ! IWORK(5)=3 ; Seek target values for X(3) ! IWORK(6)=1 ; Seek limit points in X(1) ! IWORK(7)=1 ; Control amount of output. ! IWORK(9)=0 ; Jacobian choice. ! iwork(1) = 0 iwork(2) = 2 iwork(3) = 0 iwork(4) = 0 iwork(5) = 3 iwork(6) = 1 iwork(7) = 3 iwork(9) = 0 ! ! RWORK(1)=0.00001; Absolute error tolerance ! RWORK(2)=0.00001; Relative error tolerance ! RWORK(3)=0.01 ; Minimum stepsize ! RWORK(4)=10.0 ; Maximum stepsize ! RWORK(5)=0.3 ; Starting stepsize ! RWORK(6)=1.0 ; Starting direction ! RWORK(7)=1.0 ; Target value (Seek solution with X(3)=1) ! rwork(1) = 0.00001D+00 rwork(2) = 0.00001D+00 rwork(3) = 0.01D+00 rwork(4) = 10.0D+00 rwork(5) = 0.3D+00 rwork(6) = 1.0D+00 rwork(7) = 1.0D+00 ! ! Set the starting point. ! xr(1:3) = (/ 15.0D+00, -2.0D+00, 0.0D+00 /) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Number of equations is ', nvar - 1 write ( *, '(a,i8)' ) ' Number of variables is ', nvar write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Step Type of point X(1) X(2) X(3)' write ( *, '(a)' ) ' ' i = 0 name = 'Start point ' write ( *, '(i3,2x,a12,2x,3g14.6)' ) i, name, xr(1:nvar) do i = 1, 30 call pitcon ( dfroth, fpar, fxroth, ierror, ipar, iwork, liw, & nvar, rwork, lrw, xr, dge_slv ) if ( iwork(1) == 1 ) then name = 'Corrected ' else if ( iwork(1) == 2 ) then name = 'Continuation ' else if ( iwork(1) == 3 ) then name = 'Target point ' else if ( iwork(1) == 4 ) then name = 'Limit point ' else if ( iwork(1) < 0 ) then name = 'Jacobian ' end if write ( *, '(i3,2x,a12,2x,3g14.6)' ) i, name, xr(1:nvar) if ( iwork(1) == 3 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PITCON reached the target point.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'The computation succeeded.' exit end if if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PITCON returned an error code:' write ( *, '(a,i6)' ) 'IERROR = ', ierror write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'The computation failed.' exit end if end do ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PITCON7_PRB1:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine fxroth ( nvar, fpar, ipar, x, f ) !*****************************************************************************80 ! !! FXROTH evaluates the function F(X) at X. ! ! Function: ! ! ( X1 - ((X2-5.0)*X2+2.0)*X2 - 13.0 + 34.0*(X3-1.0) ) ! ( X1 + ((X2+1.0)*X2-14.0)*X2 - 29.0 + 10.0*(X3-1.0) ) ! implicit none integer nvar double precision f(*) double precision fpar(*) integer ipar(*) double precision x(nvar) f(1) = x(1) - ( ( x(2) - 5.0D+00 ) * x(2) + 2.0D+00 ) * x(2) - 13.0D+00 & + 34.0D+00 * ( x(3) - 1.0D+00 ) f(2) = x(1) + ( ( x(2) + 1.0D+00 ) * x(2) - 14.0D+00 ) * x(2) - 29.0D+00 & + 10.0D+00 * ( x(3) - 1.0D+00 ) return end subroutine dfroth ( nvar, fpar, ipar, x, fjac ) !*****************************************************************************80 ! !! DFROTH evaluates the Jacobian J(X) at X. ! ! Jacobian: ! ! ( 1.0 (-3.0*X(2)+10.0)*X(2)- 2.0 34.0 ) ! ( 1.0 ( 3.0*X(2)+ 2.0)*X(2)-14.0 10.0 ) ! implicit none integer nvar double precision fjac(nvar,nvar) double precision fpar(*) integer ipar(*) double precision x(nvar) fjac(1,1) = 1.0D+00 fjac(1,2) = ( - 3.0D+00 * x(2) + 10.0D+00 ) * x(2) - 2.0D+00 fjac(1,3) = 34.0D+00 fjac(2,1) = 1.0D+00 fjac(2,2) = ( 3.0D+00 * x(2) + 2.0D+00 ) * x(2) - 14.0D+00 fjac(2,3) = 10.0D+00 return end