! ! Description: Solves a nonlinear system in parallel with SNES. ! We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular ! domain, using distributed arrays (DAs) to partition the parallel grid. ! The command line options include: ! -par , where indicates the nonlinearity of the problem ! problem SFI: = Bratu parameter (0 <= par <= 6.81) ! !/*T ! Concepts: SNES^parallel Bratu example ! Concepts: DA^using distributed arrays; ! Processors: n !T*/ ! ! -------------------------------------------------------------------------- ! ! Solid Fuel Ignition (SFI) problem. This problem is modeled by ! the partial differential equation ! ! -Laplacian u - lambda*exp(u) = 0, 0 < x,y < 1, ! ! with boundary conditions ! ! u = 0 for x = 0, x = 1, y = 0, y = 1. ! ! A finite difference approximation with the usual 5-point stencil ! is used to discretize the boundary value problem to obtain a nonlinear ! system of equations. ! ! The uniprocessor version of this code is snes/examples/tutorials/ex4f.F ! ! -------------------------------------------------------------------------- ! The following define must be used before including any PETSc include files ! into a module or interface. This is because they can not handle declarations ! in them ! module f90module type userctx #define PETSC_AVOID_DECLARATIONS #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #undef PETSC_AVOID_DECLARATIONS DA da integer xs,xe,xm,gxs,gxe,gxm integer ys,ye,ym,gys,gye,gym integer mx,my,rank double precision lambda end type userctx contains ! --------------------------------------------------------------------- ! ! FormFunction - Evaluates nonlinear function, F(x). ! ! Input Parameters: ! snes - the SNES context ! X - input vector ! dummy - optional user-defined context, as set by SNESSetFunction() ! (not used here) ! ! Output Parameter: ! F - function vector ! ! Notes: ! This routine serves as a wrapper for the lower-level routine ! "FormFunctionLocal", where the actual computations are ! done using the standard Fortran style of treating the local ! vector data as a multidimensional array over the local mesh. ! This routine merely handles ghost point scatters and accesses ! the local vector data via VecGetArrayF90() and VecRestoreArrayF90(). ! subroutine FormFunction(snes,X,F,user,ierr) implicit none #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #include "include/finclude/petscis.h" #include "include/finclude/petscmat.h" #include "include/finclude/petscksp.h" #include "include/finclude/petscpc.h" #include "include/finclude/petscsnes.h" #include "include/finclude/petscvec.h90" ! Input/output variables: SNES snes Vec X,F integer ierr type (userctx) user ! Declarations for use with local arrays: PetscScalar,pointer :: lx_v(:),lf_v(:) Vec localX ! Scatter ghost points to local vector, using the 2-step process ! DAGlobalToLocalBegin(), DAGlobalToLocalEnd(). ! By placing code between these two statements, computations can ! be done while messages are in transition. call DAGetLocalVector(user%da,localX,ierr) call DAGlobalToLocalBegin(user%da,X,INSERT_VALUES, & & localX,ierr) call DAGlobalToLocalEnd(user%da,X,INSERT_VALUES,localX,ierr) ! Get a pointer to vector data. ! - For default PETSc vectors, VecGetArray90() returns a pointer to ! the data array. Otherwise, the routine is implementation dependent. ! - You MUST call VecRestoreArrayF90() when you no longer need access to ! the array. ! - Note that the interface to VecGetArrayF90() differs from VecGetArray(), ! and is useable from Fortran-90 Only. call VecGetArrayF90(localX,lx_v,ierr) call VecGetArrayF90(F,lf_v,ierr) ! Compute function over the locally owned part of the grid call FormFunctionLocal(lx_v,lf_v,user,ierr) ! Restore vectors call VecRestoreArrayF90(localX,lx_v,ierr) call VecRestoreArrayF90(F,lf_v,ierr) ! Insert values into global vector call DARestoreLocalVector(user%da,localX,ierr) call PetscLogFlops(11*user%ym*user%xm,ierr) ! call VecView(X,PETSC_VIEWER_STDOUT_WORLD,ierr) ! call VecView(F,PETSC_VIEWER_STDOUT_WORLD,ierr) return end subroutine formfunction end module f90module program main use f90module implicit none ! ! #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #include "include/finclude/petscis.h" #include "include/finclude/petscmat.h" #include "include/finclude/petscksp.h" #include "include/finclude/petscpc.h" #include "include/finclude/petscsnes.h" #include "include/finclude/petscvec.h90" #include "include/finclude/petscda.h90" ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Variable declarations ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! ! Variables: ! snes - nonlinear solver ! x, r - solution, residual vectors ! J - Jacobian matrix ! its - iterations for convergence ! Nx, Ny - number of preocessors in x- and y- directions ! matrix_free - flag - 1 indicates matrix-free version ! ! SNES snes Vec x,r Mat J integer its,matrix_free,flg,ierr double precision lambda_max,lambda_min type (userctx) user ! Note: Any user-defined Fortran routines (such as FormJacobian) ! MUST be declared as external. external FormInitialGuess,FormJacobian ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Initialize program ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - call PetscInitialize(PETSC_NULL_CHARACTER,ierr) call MPI_Comm_rank(PETSC_COMM_WORLD,user%rank,ierr) ! Initialize problem parameters lambda_max = 6.81 lambda_min = 0.0 user%lambda = 6.0 call PetscOptionsGetReal(PETSC_NULL_CHARACTER,'-par', & & user%lambda,flg,ierr) if (user%lambda .ge. lambda_max .or. user%lambda .le. lambda_min) & & then if (user%rank .eq. 0) write(6,*) 'Lambda is out of range' SETERRQ(1,' ',ierr) endif ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Create nonlinear solver context ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - call SNESCreate(PETSC_COMM_WORLD,snes,ierr) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Create vector data structures; set function evaluation routine ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Create distributed array (DA) to manage parallel grid and vectors ! This really needs only the star-type stencil, but we use the box ! stencil temporarily. call DACreate2d(PETSC_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_BOX, & & -4,-4,PETSC_DECIDE,PETSC_DECIDE,1,1, & & PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,user%da,ierr) call DAGetInfo(user%da,PETSC_NULL_INTEGER,user%mx,user%my, & & PETSC_NULL_INTEGER, & & PETSC_NULL_INTEGER,PETSC_NULL_INTEGER, & & PETSC_NULL_INTEGER,PETSC_NULL_INTEGER, & & PETSC_NULL_INTEGER,PETSC_NULL_INTEGER, & & PETSC_NULL_INTEGER,ierr) ! ! Visualize the distribution of the array across the processors ! ! call DAView(user%da,PETSC_VIEWER_DRAW_WORLD,ierr) ! Extract global and local vectors from DA; then duplicate for remaining ! vectors that are the same types call DACreateGlobalVector(user%da,x,ierr) call VecDuplicate(x,r,ierr) ! Get local grid boundaries (for 2-dimensional DA) call DAGetCorners(user%da,user%xs,user%ys,PETSC_NULL_INTEGER, & & user%xm,user%ym,PETSC_NULL_INTEGER,ierr) call DAGetGhostCorners(user%da,user%gxs,user%gys, & & PETSC_NULL_INTEGER,user%gxm,user%gym, & & PETSC_NULL_INTEGER,ierr) ! Here we shift the starting indices up by one so that we can easily ! use the Fortran convention of 1-based indices (rather 0-based indices). user%xs = user%xs+1 user%ys = user%ys+1 user%gxs = user%gxs+1 user%gys = user%gys+1 user%ye = user%ys+user%ym-1 user%xe = user%xs+user%xm-1 user%gye = user%gys+user%gym-1 user%gxe = user%gxs+user%gxm-1 ! Set function evaluation routine and vector call SNESSetFunction(snes,r,FormFunction,user,ierr) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Create matrix data structure; set Jacobian evaluation routine ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Set Jacobian matrix data structure and default Jacobian evaluation ! routine. User can override with: ! -snes_fd : default finite differencing approximation of Jacobian ! -snes_mf : matrix-free Newton-Krylov method with no preconditioning ! (unless user explicitly sets preconditioner) ! -snes_mf_operator : form preconditioning matrix as set by the user, ! but use matrix-free approx for Jacobian-vector ! products within Newton-Krylov method ! ! Note: For the parallel case, vectors and matrices MUST be partitioned ! accordingly. When using distributed arrays (DAs) to create vectors, ! the DAs determine the problem partitioning. We must explicitly ! specify the local matrix dimensions upon its creation for compatibility ! with the vector distribution. Thus, the generic MatCreate() routine ! is NOT sufficient when working with distributed arrays. ! ! Note: Here we only approximately preallocate storage space for the ! Jacobian. See the users manual for a discussion of better techniques ! for preallocating matrix memory. call PetscOptionsHasName(PETSC_NULL_CHARACTER,'-snes_mf', & & matrix_free,ierr) if (matrix_free .eq. 0) then call DAGetMatrix(user%da,MATAIJ,J,ierr) call SNESSetJacobian(snes,J,J,FormJacobian,user,ierr) endif ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Customize nonlinear solver; set runtime options ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Set runtime options (e.g., -snes_monitor -snes_rtol -ksp_type ) call SNESSetFromOptions(snes,ierr) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Evaluate initial guess; then solve nonlinear system. ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Note: The user should initialize the vector, x, with the initial guess ! for the nonlinear solver prior to calling SNESSolve(). In particular, ! to employ an initial guess of zero, the user should explicitly set ! this vector to zero by calling VecSet(). call FormInitialGuess(user,x,ierr) call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr) call SNESGetIterationNumber(snes,its,ierr); if (user%rank .eq. 0) then write(6,100) its endif 100 format('Number of Newton iterations = ',i5) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Free work space. All PETSc objects should be destroyed when they ! are no longer needed. ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if (matrix_free .eq. 0) call MatDestroy(J,ierr) call VecDestroy(x,ierr) call VecDestroy(r,ierr) call SNESDestroy(snes,ierr) call DADestroy(user%da,ierr) call PetscFinalize(ierr) end ! --------------------------------------------------------------------- ! ! FormInitialGuess - Forms initial approximation. ! ! Input Parameters: ! X - vector ! ! Output Parameter: ! X - vector ! ! Notes: ! This routine serves as a wrapper for the lower-level routine ! "InitialGuessLocal", where the actual computations are ! done using the standard Fortran style of treating the local ! vector data as a multidimensional array over the local mesh. ! This routine merely handles ghost point scatters and accesses ! the local vector data via VecGetArrayF90() and VecRestoreArrayF90(). ! subroutine FormInitialGuess(user,X,ierr) use f90module implicit none #include "include/finclude/petscvec.h90" #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #include "include/finclude/petscis.h" #include "include/finclude/petscmat.h" #include "include/finclude/petscksp.h" #include "include/finclude/petscpc.h" #include "include/finclude/petscsnes.h" ! Input/output variables: type (userctx) user Vec X integer ierr ! Declarations for use with local arrays: PetscScalar,pointer :: lx_v(:) Vec localX ierr = 0 ! Get a pointer to vector data. ! - For default PETSc vectors, VecGetArray90() returns a pointer to ! the data array. Otherwise, the routine is implementation dependent. ! - You MUST call VecRestoreArrayF90() when you no longer need access to ! the array. ! - Note that the interface to VecGetArrayF90() differs from VecGetArray(), ! and is useable from Fortran-90 Only. call DAGetLocalVector(user%da,localX,ierr) call VecGetArrayF90(localX,lx_v,ierr) ! Compute initial guess over the locally owned part of the grid call InitialGuessLocal(user,lx_v,ierr) ! Restore vector call VecRestoreArrayF90(localX,lx_v,ierr) ! Insert values into global vector call DALocalToGlobal(user%da,localX,INSERT_VALUES,X,ierr) call DARestoreLocalVector(user%da,localX,ierr) return end ! --------------------------------------------------------------------- ! ! InitialGuessLocal - Computes initial approximation, called by ! the higher level routine FormInitialGuess(). ! ! Input Parameter: ! x - local vector data ! ! Output Parameters: ! x - local vector data ! ierr - error code ! ! Notes: ! This routine uses standard Fortran-style computations over a 2-dim array. ! subroutine InitialGuessLocal(user,x,ierr) use f90module implicit none #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #include "include/finclude/petscis.h" #include "include/finclude/petscmat.h" #include "include/finclude/petscksp.h" #include "include/finclude/petscpc.h" #include "include/finclude/petscsnes.h" ! Input/output variables: type (userctx) user PetscScalar x(user%gxs:user%gxe,user%gys:user%gye) integer ierr ! Local variables: integer i,j,hxdhy,hydhx PetscScalar temp1,temp,hx,hy,sc,one ! Set parameters ierr = 0 one = 1.0 hx = one/(dble(user%mx-1)) hy = one/(dble(user%my-1)) sc = hx*hy*user%lambda hxdhy = hx/hy hydhx = hy/hx temp1 = user%lambda/(user%lambda + one) do 20 j=user%ys,user%ye temp = dble(min(j-1,user%my-j))*hy do 10 i=user%xs,user%xe if (i .eq. 1 .or. j .eq. 1 & & .or. i .eq. user%mx .or. j .eq. user%my) then x(i,j) = 0.0 else x(i,j) = temp1 * & & sqrt(min(dble(min(i-1,user%mx-i)*hx),dble(temp))) endif 10 continue 20 continue return end ! --------------------------------------------------------------------- ! ! FormFunctionLocal - Computes nonlinear function, called by ! the higher level routine FormFunction(). ! ! Input Parameter: ! x - local vector data ! ! Output Parameters: ! f - local vector data, f(x) ! ierr - error code ! ! Notes: ! This routine uses standard Fortran-style computations over a 2-dim array. ! subroutine FormFunctionLocal(x,f,user,ierr) use f90module implicit none ! Input/output variables: type (userctx) user PetscScalar x(user%gxs:user%gxe,user%gys:user%gye) PetscScalar f(user%xs:user%xe,user%ys:user%ye) integer ierr ! Local variables: PetscScalar two,one,hx,hy,hxdhy,hydhx,sc PetscScalar u,uxx,uyy integer i,j one = 1.0 two = 2.0 hx = one/dble(user%mx-1) hy = one/dble(user%my-1) sc = hx*hy*user%lambda hxdhy = hx/hy hydhx = hy/hx ! Compute function over the locally owned part of the grid do 20 j=user%ys,user%ye do 10 i=user%xs,user%xe if (i .eq. 1 .or. j .eq. 1 & & .or. i .eq. user%mx .or. j .eq. user%my) then f(i,j) = x(i,j) else u = x(i,j) uxx = hydhx * (two*u & & - x(i-1,j) - x(i+1,j)) uyy = hxdhy * (two*u - x(i,j-1) - x(i,j+1)) f(i,j) = uxx + uyy - sc*exp(u) endif 10 continue 20 continue return end ! --------------------------------------------------------------------- ! ! FormJacobian - Evaluates Jacobian matrix. ! ! Input Parameters: ! snes - the SNES context ! x - input vector ! dummy - optional user-defined context, as set by SNESSetJacobian() ! (not used here) ! ! Output Parameters: ! jac - Jacobian matrix ! jac_prec - optionally different preconditioning matrix (not used here) ! flag - flag indicating matrix structure ! ! Notes: ! This routine serves as a wrapper for the lower-level routine ! "FormJacobianLocal", where the actual computations are ! done using the standard Fortran style of treating the local ! vector data as a multidimensional array over the local mesh. ! This routine merely accesses the local vector data via ! VecGetArrayF90() and VecRestoreArrayF90(). ! ! Notes: ! Due to grid point reordering with DAs, we must always work ! with the local grid points, and then transform them to the new ! global numbering with the "ltog" mapping (via DAGetGlobalIndicesF90()). ! We cannot work directly with the global numbers for the original ! uniprocessor grid! ! ! Two methods are available for imposing this transformation ! when setting matrix entries: ! (A) MatSetValuesLocal(), using the local ordering (including ! ghost points!) ! - Use DAGetGlobalIndicesF90() to extract the local-to-global map ! - Associate this map with the matrix by calling ! MatSetLocalToGlobalMapping() once ! - Set matrix entries using the local ordering ! by calling MatSetValuesLocal() ! (B) MatSetValues(), using the global ordering ! - Use DAGetGlobalIndicesF90() to extract the local-to-global map ! - Then apply this map explicitly yourself ! - Set matrix entries using the global ordering by calling ! MatSetValues() ! Option (A) seems cleaner/easier in many cases, and is the procedure ! used in this example. ! subroutine FormJacobian(snes,X,jac,jac_prec,flag,user,ierr) use f90module implicit none #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #include "include/finclude/petscis.h" #include "include/finclude/petscmat.h" #include "include/finclude/petscksp.h" #include "include/finclude/petscpc.h" #include "include/finclude/petscsnes.h" #include "include/finclude/petscvec.h90" ! Input/output variables: SNES snes Vec X Mat jac,jac_prec MatStructure flag type(userctx) user integer ierr ! Declarations for use with local arrays: PetscScalar,pointer :: lx_v(:) Vec localX ! Scatter ghost points to local vector, using the 2-step process ! DAGlobalToLocalBegin(), DAGlobalToLocalEnd() ! Computations can be done while messages are in transition, ! by placing code between these two statements. call DAGetLocalVector(user%da,localX,ierr) call DAGlobalToLocalBegin(user%da,X,INSERT_VALUES,localX, & & ierr) call DAGlobalToLocalEnd(user%da,X,INSERT_VALUES,localX,ierr) ! Get a pointer to vector data call VecGetArrayF90(localX,lx_v,ierr) ! Compute entries for the locally owned part of the Jacobian. call FormJacobianLocal(lx_v,jac,jac_prec,user,ierr) ! Assemble matrix, using the 2-step process: ! MatAssemblyBegin(), MatAssemblyEnd() ! Computations can be done while messages are in transition, ! by placing code between these two statements. call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr) call VecRestoreArrayF90(localX,lx_v,ierr) call DARestoreLocalVector(user%da,localX,ierr) call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr) ! Set flag to indicate that the Jacobian matrix retains an identical ! nonzero structure throughout all nonlinear iterations (although the ! values of the entries change). Thus, we can save some work in setting ! up the preconditioner (e.g., no need to redo symbolic factorization for ! ILU/ICC preconditioners). ! - If the nonzero structure of the matrix is different during ! successive linear solves, then the flag DIFFERENT_NONZERO_PATTERN ! must be used instead. If you are unsure whether the matrix ! structure has changed or not, use the flag DIFFERENT_NONZERO_PATTERN. ! - Caution: If you specify SAME_NONZERO_PATTERN, PETSc ! believes your assertion and does not check the structure ! of the matrix. If you erroneously claim that the structure ! is the same when it actually is not, the new preconditioner ! will not function correctly. Thus, use this optimization ! feature with caution! flag = SAME_NONZERO_PATTERN ! Tell the matrix we will never add a new nonzero location to the ! matrix. If we do it will generate an error. call MatSetOption(jac,MAT_NEW_NONZERO_LOCATION_ERR,ierr) return end ! --------------------------------------------------------------------- ! ! FormJacobianLocal - Computes Jacobian matrix, called by ! the higher level routine FormJacobian(). ! ! Input Parameters: ! x - local vector data ! ! Output Parameters: ! jac - Jacobian matrix ! jac_prec - optionally different preconditioning matrix (not used here) ! ierr - error code ! ! Notes: ! This routine uses standard Fortran-style computations over a 2-dim array. ! ! Notes: ! Due to grid point reordering with DAs, we must always work ! with the local grid points, and then transform them to the new ! global numbering with the "ltog" mapping (via DAGetGlobalIndicesF90()). ! We cannot work directly with the global numbers for the original ! uniprocessor grid! ! ! Two methods are available for imposing this transformation ! when setting matrix entries: ! (A) MatSetValuesLocal(), using the local ordering (including ! ghost points!) ! - Use DAGetGlobalIndicesF90() to extract the local-to-global map ! - Associate this map with the matrix by calling ! MatSetLocalToGlobalMapping() once ! - Set matrix entries using the local ordering ! by calling MatSetValuesLocal() ! (B) MatSetValues(), using the global ordering ! - Use DAGetGlobalIndicesF90() to extract the local-to-global map ! - Then apply this map explicitly yourself ! - Set matrix entries using the global ordering by calling ! MatSetValues() ! Option (A) seems cleaner/easier in many cases, and is the procedure ! used in this example. ! subroutine FormJacobianLocal(x,jac,jac_prec,user,ierr) use f90module implicit none #include "include/finclude/petsc.h" #include "include/finclude/petscvec.h" #include "include/finclude/petscda.h" #include "include/finclude/petscis.h" #include "include/finclude/petscmat.h" #include "include/finclude/petscksp.h" #include "include/finclude/petscpc.h" #include "include/finclude/petscsnes.h" ! Input/output variables: type (userctx) user PetscScalar x(user%gxs:user%gxe,user%gys:user%gye) Mat jac,jac_prec integer ierr ! Local variables: integer row,col(5),i,j PetscScalar two,one,hx,hy,hxdhy,hydhx,sc,v(5) ! Set parameters one = 1.0 two = 2.0 hx = one/dble(user%mx-1) hy = one/dble(user%my-1) sc = hx*hy hxdhy = hx/hy hydhx = hy/hx ! Compute entries for the locally owned part of the Jacobian. ! - Currently, all PETSc parallel matrix formats are partitioned by ! contiguous chunks of rows across the processors. ! - Each processor needs to insert only elements that it owns ! locally (but any non-local elements will be sent to the ! appropriate processor during matrix assembly). ! - Here, we set all entries for a particular row at once. ! - We can set matrix entries either using either ! MatSetValuesLocal() or MatSetValues(), as discussed above. ! - Note that MatSetValues() uses 0-based row and column numbers ! in Fortran as well as in C. do 20 j=user%ys,user%ye row = (j - user%gys)*user%gxm + user%xs - user%gxs - 1 do 10 i=user%xs,user%xe row = row + 1 ! boundary points if (i .eq. 1 .or. j .eq. 1 & & .or. i .eq. user%mx .or. j .eq. user%my) then col(1) = row v(1) = one call MatSetValuesLocal(jac,1,row,1,col,v, & & INSERT_VALUES,ierr) ! interior grid points else v(1) = -hxdhy v(2) = -hydhx v(3) = two*(hydhx + hxdhy) & & - sc*user%lambda*exp(x(i,j)) v(4) = -hydhx v(5) = -hxdhy col(1) = row - user%gxm col(2) = row - 1 col(3) = row col(4) = row + 1 col(5) = row + user%gxm call MatSetValuesLocal(jac,1,row,5,col,v, & & INSERT_VALUES,ierr) endif 10 continue 20 continue return end