! This is part of the netCDF package. ! Copyright 2006 University Corporation for Atmospheric Research/Unidata. ! See COPYRIGHT file for conditions of use. ! This is an example program which writes some 4D pressure and ! temperatures. It is intended to illustrate the use of the netCDF ! fortran 90 API. The companion program pres_temp_4D_rd.f shows how ! to read the netCDF data file created by this program. ! This program is part of the netCDF tutorial: ! http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial ! Full documentation of the netCDF Fortran 90 API can be found at: ! http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-f90 ! $Id: pres_temp_4D_wr.f90,v 1.7 2007/01/24 19:32:10 russ Exp $ program pres_temp_4D_wr use netcdf implicit none ! This is the name of the data file we will create. character (len = *), parameter :: FILE_NAME = "pres_temp_4D.nc" integer :: ncid ! We are writing 4D data, a 2 x 6 x 12 lvl-lat-lon grid, with 2 ! timesteps of data. integer, parameter :: NDIMS = 4, NRECS = 2 integer, parameter :: NLVLS = 2, NLATS = 6, NLONS = 12 character (len = *), parameter :: LVL_NAME = "level" character (len = *), parameter :: LAT_NAME = "latitude" character (len = *), parameter :: LON_NAME = "longitude" character (len = *), parameter :: REC_NAME = "time" integer :: lvl_dimid, lon_dimid, lat_dimid, rec_dimid ! The start and count arrays will tell the netCDF library where to ! write our data. integer :: start(NDIMS), count(NDIMS) ! These program variables hold the latitudes and longitudes. real :: lats(NLATS), lons(NLONS) integer :: lon_varid, lat_varid ! We will create two netCDF variables, one each for temperature and ! pressure fields. character (len = *), parameter :: PRES_NAME="pressure" character (len = *), parameter :: TEMP_NAME="temperature" integer :: pres_varid, temp_varid integer :: dimids(NDIMS) ! We recommend that each variable carry a "units" attribute. character (len = *), parameter :: UNITS = "units" character (len = *), parameter :: PRES_UNITS = "hPa" character (len = *), parameter :: TEMP_UNITS = "celsius" character (len = *), parameter :: LAT_UNITS = "degrees_north" character (len = *), parameter :: LON_UNITS = "degrees_east" ! Program variables to hold the data we will write out. We will only ! need enough space to hold one timestep of data; one record. real :: pres_out(NLONS, NLATS, NLVLS) real :: temp_out(NLONS, NLATS, NLVLS) real, parameter :: SAMPLE_PRESSURE = 900.0 real, parameter :: SAMPLE_TEMP = 9.0 ! Use these to construct some latitude and longitude data for this ! example. real, parameter :: START_LAT = 25.0, START_LON = -125.0 ! Loop indices integer :: lvl, lat, lon, rec, i ! Create pretend data. If this wasn't an example program, we would ! have some real data to write, for example, model output. do lat = 1, NLATS lats(lat) = START_LAT + (lat - 1) * 5.0 end do do lon = 1, NLONS lons(lon) = START_LON + (lon - 1) * 5.0 end do i = 0 do lvl = 1, NLVLS do lat = 1, NLATS do lon = 1, NLONS pres_out(lon, lat, lvl) = SAMPLE_PRESSURE + i temp_out(lon, lat, lvl) = SAMPLE_TEMP + i i = i + 1 end do end do end do ! Create the file. call check( nf90_create(FILE_NAME, nf90_clobber, ncid) ) ! Define the dimensions. The record dimension is defined to have ! unlimited length - it can grow as needed. In this example it is ! the time dimension. call check( nf90_def_dim(ncid, LVL_NAME, NLVLS, lvl_dimid) ) call check( nf90_def_dim(ncid, LAT_NAME, NLATS, lat_dimid) ) call check( nf90_def_dim(ncid, LON_NAME, NLONS, lon_dimid) ) call check( nf90_def_dim(ncid, REC_NAME, NF90_UNLIMITED, rec_dimid) ) ! Define the coordinate variables. We will only define coordinate ! variables for lat and lon. Ordinarily we would need to provide ! an array of dimension IDs for each variable's dimensions, but ! since coordinate variables only have one dimension, we can ! simply provide the address of that dimension ID (lat_dimid) and ! similarly for (lon_dimid). call check( nf90_def_var(ncid, LAT_NAME, NF90_REAL, lat_dimid, lat_varid) ) call check( nf90_def_var(ncid, LON_NAME, NF90_REAL, lon_dimid, lon_varid) ) ! Assign units attributes to coordinate variables. call check( nf90_put_att(ncid, lat_varid, UNITS, LAT_UNITS) ) call check( nf90_put_att(ncid, lon_varid, UNITS, LON_UNITS) ) ! The dimids array is used to pass the dimids of the dimensions of ! the netCDF variables. Both of the netCDF variables we are creating ! share the same four dimensions. In Fortran, the unlimited ! dimension must come last on the list of dimids. dimids = (/ lon_dimid, lat_dimid, lvl_dimid, rec_dimid /) ! Define the netCDF variables for the pressure and temperature data. call check( nf90_def_var(ncid, PRES_NAME, NF90_REAL, dimids, pres_varid) ) call check( nf90_def_var(ncid, TEMP_NAME, NF90_REAL, dimids, temp_varid) ) ! Assign units attributes to the netCDF variables. call check( nf90_put_att(ncid, pres_varid, UNITS, PRES_UNITS) ) call check( nf90_put_att(ncid, temp_varid, UNITS, TEMP_UNITS) ) ! End define mode. call check( nf90_enddef(ncid) ) ! Write the coordinate variable data. This will put the latitudes ! and longitudes of our data grid into the netCDF file. call check( nf90_put_var(ncid, lat_varid, lats) ) call check( nf90_put_var(ncid, lon_varid, lons) ) ! These settings tell netcdf to write one timestep of data. (The ! setting of start(4) inside the loop below tells netCDF which ! timestep to write.) count = (/ NLONS, NLATS, NLVLS, 1 /) start = (/ 1, 1, 1, 1 /) ! Write the pretend data. This will write our surface pressure and ! surface temperature data. The arrays only hold one timestep worth ! of data. We will just rewrite the same data for each timestep. In ! a real application, the data would change between timesteps. do rec = 1, NRECS start(4) = rec call check( nf90_put_var(ncid, pres_varid, pres_out, start = start, & count = count) ) call check( nf90_put_var(ncid, temp_varid, temp_out, start = start, & count = count) ) end do ! Close the file. This causes netCDF to flush all buffers and make ! sure your data are really written to disk. call check( nf90_close(ncid) ) print *,"*** SUCCESS writing example file ", FILE_NAME, "!" contains subroutine check(status) integer, intent ( in) :: status if(status /= nf90_noerr) then print *, trim(nf90_strerror(status)) stop "Stopped" end if end subroutine check end program pres_temp_4D_wr