27 August 2016 9:57:58.259 AM LINPACK_C_PRB FORTRAN90 version Test the LINPACK_C library. TEST01 For a single precision complex (C) Hermitian positive definite matrix, CCHDC computes the Cholesky decomposition. The matrix order is N = 3 The matrix: 2.5281 0.0000 2.1341 -0.2147 2.4187 0.2932 2.1341 0.2147 3.0371 0.0000 2.0905 1.1505 2.4187 -0.2932 2.0905 -1.1505 2.7638 0.0000 Decompose the matrix. The Cholesky factor U: 1.5900 0.0000 1.3422 -0.1350 1.5212 0.1844 0.0000 0.0000 1.1033 0.0000 0.0668 0.6322 0.0000 0.0000 0.0000 0.0000 0.1076 0.0000 The product U^H * U: 2.5281 0.0000 2.1341 -0.2147 2.4187 0.2932 2.1341 0.2147 3.0371 0.0000 2.0905 1.1505 2.4187 -0.2932 2.0905 -1.1505 2.7638 0.0000 TEST02 For a single precision complex (C) Hermitian positive definite matrix, CCHEX can shift columns in a Cholesky factorization. The matrix order is N = 3 The matrix A: 2.5281 0.0000 2.1341 -0.2147 2.4187 0.2932 2.1341 0.2147 3.0371 0.0000 2.0905 1.1505 2.4187 -0.2932 2.0905 -1.1505 2.7638 0.0000 The vector Z: 1.00000 0.00000 2.00000 0.00000 3.00000 0.00000 Decompose the matrix. The Cholesky factor U: 1.5900 0.0000 1.3422 -0.1350 1.5212 0.1844 0.0000 0.0000 1.1033 0.0000 0.0668 0.6322 0.0000 0.0000 0.0000 0.0000 0.1076 0.0000 Right circular shift columns K = 1 through L = 3 Left circular shift columns K = 2 through L = 3 The shifted Cholesky factor U: 1.6504 0.2001 1.3316 -0.5357 1.4655 0.0000 0.0000 0.0000 0.8500 -0.5045 -0.1357 -0.5905 0.0000 0.0000 0.0000 0.0000 -0.1051 -0.0463 The shifted vector Z: 1.28565 -0.722065 1.47222 -0.393939 3.08193 0.693803E-01 The shifted product U' * U: 2.7638 0.0000 2.0905 -1.1505 2.4187 -0.2932 2.0905 1.1505 3.0371 0.0000 2.1341 0.2147 2.4187 0.2932 2.1341 -0.2147 2.5281 0.0000 TEST03 For a single precision complex (C) Hermitian matrix CCHUD updates a Cholesky decomposition. CTRSL solves a triangular linear system. In this example, we use CCHUD to solve a least squares problem R * b = z. The matrix order is P = 20 RHS # 1 1 2.37939 20.7676 2 2.73442 2.99590 3 6.41793 -59.0689 4 -27.5766 28.6041 5 10.1169 15.4775 ...... .............. 16 -20.9813 8.30040 17 23.8025 32.0735 18 -15.9471 -7.48368 19 6.25502 18.3277 20 4.85749 -5.74063 Solution vector # 1 (Should be (1,1) (2,0), (3,1) (4,0) ...) 1 0.999970 0.999986 2 1.99999 -0.383160E-05 3 3.00000 1.00001 4 3.99996 0.120699E-04 5 4.99996 1.00001 ...... .............. 16 16.0000 -0.350860E-04 17 17.0000 1.00001 18 18.0000 0.765048E-05 19 19.0000 0.999961 20 20.0000 0.183942E-04 TEST04 For a single precision complex (C) general band storage matrix (GB): CGBCO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The lower band is ML = 1 The upper band is MU = 1 The matrix A: 0.4499 -0.1267 0.5896 0.2601 0.0000 0.0000 -0.8432 -0.3443 0.3911 0.3234 -0.2361 0.0775 0.0000 0.0000 -0.1395 -0.1561 0.0186 -0.6332 Estimated reciprocal condition number = 0.321778 TEST05 For a single precision complex (C) general band storage matrix (GB): CGBFA factors the matrix; CGBSL solves a factored linear system. The matrix order is N = 3 The lower band is ML = 1 The upper band is MU = 1 The matrix: 0.4499 -0.1267 0.5896 0.2601 0.0000 0.0000 -0.8432 -0.3443 0.3911 0.3234 -0.2361 0.0775 0.0000 0.0000 -0.1395 -0.1561 0.0186 -0.6332 The right hand side B is -0.1262 0.1961 -1.2899 -0.1811 0.2198 -0.2125 Computed Exact Solution Solution 0.892850 0.103136E-01 0.892850 0.103136E-01 -0.560465 0.763795 -0.560465 0.763795 0.306357 0.262752E-01 0.306357 0.262752E-01 TEST06 For a single precision complex (C) general band storage matrix (GB): CGBFA factors the matrix. CGBDI computes the determinant. The matrix order is N = 3 The lower band is ML = 1 The upper band is MU = 1 The matrix: 0.4499 -0.1267 0.5896 0.2601 0.0000 0.0000 -0.8432 -0.3443 0.3911 0.3234 -0.2361 0.0775 0.0000 0.0000 -0.1395 -0.1561 0.0186 -0.6332 Determinant = 3.16224 -3.91854 * 10** -1.00000 TEST07 For a single precision complex (C) general storage matrix (GE): CGECO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix: 0.4499 -0.1267 0.3911 0.3234 0.0186 -0.6332 -0.8432 -0.3443 -0.1395 -0.1561 0.8928 0.0103 0.5896 0.2601 -0.2361 0.0775 -0.5605 0.7638 Estimated reciprocal condition number = 0.012294 TEST08 For a single precision complex (C) general storage matrix (GE): CGEFA factors the matrix. CGESL solves a linear system. The matrix order is N = 3 The matrix: 0.4499 -0.1267 0.3911 0.3234 0.0186 -0.6332 -0.8432 -0.3443 -0.1395 -0.1561 0.8928 0.0103 0.5896 0.2601 -0.2361 0.0775 -0.5605 0.7638 The right hand side: 0.6063 -0.3917 -0.1281 -0.0787 -0.0931 0.5765 Computed Exact Solution Solution 0.306357 0.262757E-01 0.306357 0.262752E-01 0.500803 -0.779931 0.500804 -0.779931 0.350471 0.165555E-01 0.350471 0.165551E-01 TEST09 For a single precision complex (C) general storage matrix (GE): CGEFA factors the matrix. CGEDI computes the determinant or inverse. The matrix order is N = 3 The matrix: 0.4499 -0.1267 0.3911 0.3234 0.0186 -0.6332 -0.8432 -0.3443 -0.1395 -0.1561 0.8928 0.0103 0.5896 0.2601 -0.2361 0.0775 -0.5605 0.7638 Determinant = -3.63075 -5.58236 * 10** -2.00000 The product inv(A) * A is 1.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 1.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 1.0000 0.0000 TEST10 For a single precision complex (C) general tridiagonal matrix (GT): CGTSL solves a linear system. The matrix order is N = 10 Computed Exact Solution Solution 1.00000 10.0000 1.00000 10.0000 2.00000 20.0000 2.00000 20.0000 3.00000 30.0000 3.00000 30.0000 4.00000 40.0000 4.00000 40.0000 4.99999 50.0000 5.00000 50.0000 6.00000 60.0000 6.00000 60.0000 6.99999 70.0000 7.00000 70.0000 7.99999 80.0000 8.00000 80.0000 8.99997 90.0000 9.00000 90.0000 9.99998 100.000 10.0000 100.000 TEST11 For a single precision complex (C) Hermitian matrix (HI): CHICO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A is 0.2184 0.0000 0.4685 -0.8584 -0.6458 0.3803 0.4685 0.8584 0.0661 0.0000 0.3911 0.3234 -0.6458 -0.3803 0.3911 -0.3234 0.0438 0.0000 Estimated reciprocal condition number = 0.235918 TEST12 For a single precision complex (C) Hermitian matrix (HI): CHIFA factors the matrix. CHISL solves a linear system. The matrix order is N = 3 The matrix A is 0.2184 0.0000 0.4685 -0.8584 -0.6458 0.3803 0.4685 0.8584 0.0661 0.0000 0.3911 0.3234 -0.6458 -0.3803 0.3911 -0.3234 0.0438 0.0000 The right hand side B is 0.3915 1.3499 0.4188 0.5569 -0.4378 -0.1823 Computed Exact Solution Solution 0.737082 0.301125 0.737082 0.301125 -0.545643 0.389631 -0.545643 0.389631 0.254327 -0.830657 0.254327 -0.830657 TEST13 For a single precision complex (C) Hermitian matrix (HI): CHIFA factors the matrix. CHIDI computes the determinant, inverse, or inertia. The matrix order is N = 3 The matrix A is 0.2184 0.0000 0.4685 -0.8584 -0.6458 0.3803 0.4685 0.8584 0.0661 0.0000 0.3911 0.3234 -0.6458 -0.3803 0.3911 -0.3234 0.0438 0.0000 Determinant = -8.70062 * 10** -1.00000 The inertia: 2 1 0 The product inverse(A) * A is 1.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 1.0000 0.0000 TEST14 For a single precision complex (C) Hermitian matrix using packed storage (HP), CHPCO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A is 0.2184 0.0000 0.4685 -0.8584 0.5896 0.2601 0.4685 0.8584 0.5617 0.0000 0.3911 0.3234 0.5896 -0.2601 0.3911 -0.3234 0.0438 0.0000 Estimated reciprocal condition number = 0.034006 TEST15 For a single precision complex (C) Hermitian matrix using packed storage (HP), CHPFA factors the matrix. CHPSL solves a linear system. The matrix order is N = 3 The matrix A is 0.2184 0.0000 0.4685 -0.8584 0.5896 0.2601 0.4685 0.8584 0.5617 0.0000 0.3911 0.3234 0.5896 -0.2601 0.3911 -0.3234 0.0438 0.0000 The right hand side B is 0.6058 0.2931 0.1484 0.7500 0.4367 0.2783 Computed Exact Solution Solution 0.737082 0.301125 0.737082 0.301125 -0.545643 0.389631 -0.545643 0.389631 0.254326 -0.830657 0.254327 -0.830657 TEST16 For a single precision complex (C) Hermitian matrix using packed storage (HP), CHPFA factors the matrix. CHPDI computes the determinant, inverse, or inertia. The matrix order is N = 3 The matrix A is 0.2184 0.0000 0.4685 -0.8584 0.5896 0.2601 0.4685 0.8584 0.5617 0.0000 0.3911 0.3234 0.5896 -0.2601 0.3911 -0.3234 0.0438 0.0000 Determinant = 1.21535 * 10** -1.00000 The inertia: 1 2 0 The product inv(A) * A is 1.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 TEST17 For a single precision complex (C) positive definite hermitian band matrix (PB), CPBCO estimates the reciprocal condition number. The matrix order is N = 3 Estimate the condition. Estimated reciprocal condition number = 0.153588 TEST18 For a single precision complex (C) positive definite hermitian band matrix (PB), CPBDI computes the determinant as det = MANTISSA * 10**EXPONENT The matrix order is N = 3 Determinant = 6.09571 * 10** 1.00000 TEST19 For a single precision complex (C) positive definite hermitian band matrix (PB), CPBFA computes the LU factors. CPBSL solves a factored linear system. The matrix order is N = 3 Factor the matrix. Solve the linear system. The solution: (Should be roughly (1,2,3)): 1 1.00000 -0.140053E-07 2 2.00000 0.00000 3 3.00000 -0.712162E-07 TEST20 For a single precision complex (C) Hermitian positive definite matrix (PO), CPOCO estimates the reciprocal condition number. The matrix order is N = 3 Estimate the condition. Estimated reciprocal condition number = 0.000602 TEST21 For a single precision complex (C) Hermitian positive definite matrix (PO), CPOFA computes the LU factors, CPODI computes the inverse or determinant. The matrix order is N = 3 Factor the matrix. Get the determinant and inverse. Determinant = 3.56020 * 10 ** -2.00000 The product inverse(A) * A is 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 TEST22 For a single precision complex (C) Hermitian positive definite matrix (PO), CPOFA computes the LU factors. CPOSL solves a factored linear system. The matrix order is N = 3 Factor the matrix. Solve the linear system. The solution: (Should be (1+2i),(3+4i),(5+6i): 1 1.00014 1.99994 2 3.00001 4.00010 3 4.99984 6.00000 TEST23 For a single precision complex (C) Hermitian positive definite packed matrix (PP), CPPCO estimates the reciprocal condition number. The matrix order is N = 3 Estimate the condition number. Estimated reciprocal condition number = 0.000602 TEST24 For a single precision complex (C) Hermitian positive definite packed matrix (PP), CPPFA factors the matrix. CPPDI computes the inverse or determinant. The matrix order is N = 3 Factor the matrix. Get the determinant and inverse. Determinant = 3.56020 * 10 ** -2.00000 Matrix Inverse(A): 75.8410 -0.0000 -14.1735 -44.2781 -74.0824 31.3458 -14.1735 44.2781 29.5232 -0.0000 -5.2299 -49.5355 -74.0824 -31.3458 -5.2299 49.5355 86.4448 -0.0000 Matrix Inverse(A) * A: 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 1.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 TEST25 For a single precision complex (C) Hermitian positive definite packed matrix (PP), CPPFA factors the matrix. CPPSL solves a factored linear system. The matrix order is N = 3 Factor the matrix. Solve the linear system. The solution: (Should be (1+2i),(3+4i),(5+6i): 1 1.00012 2.00029 2 2.99981 4.00002 3 5.00000 5.99967 TEST26 For a single precision complex (C) Hermitian positive definite tridiagonal matrix (PT), CPTSL factors and solves a linear system. The matrix order is N = 3 Factor the matrix and solve the system. The solution: (Should be roughly (1,2,3)): 1 1.00000 0.394898E-07 2 2.00000 -0.843695E-07 3 3.00000 0.500480E-07 CQRDC_TEST CQRDC computes the QR decomposition of a rectangular matrix, but does not return Q and R explicitly. The matrix row order is N = 3 The matrix column order is P = 3 Show how Q and R can be recovered using CQRSL. The matrix A is 0.4499 -0.1267 0.3911 0.3234 0.0186 -0.6332 -0.8432 -0.3443 -0.1395 -0.1561 0.8928 0.0103 0.5896 0.2601 -0.2361 0.0775 -0.5605 0.7638 Decompose the matrix. The packed matrix A which describes Q and R: -1.1644 0.3279 -0.2355 -0.2650 0.4991 -0.6664 -0.5938 -0.4629 0.1053 -0.4758 -1.1703 0.1429 0.4109 0.3391 -0.3781 0.6677 -0.0980 0.0561 The QRAUX vector, containing some additional information defining Q: 1.3864 0.0000 1.6413 0.0000 0.0000 0.0000 The R factor: -1.1644 0.3279 -0.2355 -0.2650 0.4991 -0.6664 0.0000 0.0000 0.1053 -0.4758 -1.1703 0.1429 0.0000 0.0000 0.0000 0.0000 -0.0980 0.0561 The Q factor: -0.3864 0.0000 -0.3098 0.6994 0.2701 0.4389 0.5938 0.4629 -0.2751 -0.1962 0.4090 0.3895 -0.4109 -0.3391 0.1152 -0.5362 0.6140 0.1962 The product Q * R: 0.4499 -0.1267 0.3911 0.3234 0.0186 -0.6332 -0.8432 -0.3443 -0.1395 -0.1561 0.8928 0.0103 0.5896 0.2601 -0.2361 0.0775 -0.5605 0.7638 TEST28 For a single precision complex (C) symmetric matrix (SI): CSICO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A is 0.4499 -0.1267 -0.8432 -0.3443 0.5896 0.2601 -0.8432 -0.3443 0.3911 0.3234 -0.1395 -0.1561 0.5896 0.2601 -0.1395 -0.1561 -0.2361 0.0775 Estimated reciprocal condition number = 0.047532 TEST29 For a single precision complex (C) symmetric matrix (SI): CSIFA factors the matrix. CSISL solves a linear system. The matrix order is N = 3 The matrix A is 0.4499 -0.1267 -0.8432 -0.3443 0.5896 0.2601 -0.8432 -0.3443 0.3911 0.3234 -0.1395 -0.1561 0.5896 0.2601 -0.1395 -0.1561 -0.2361 0.0775 The right hand side B is -1.3503 -0.2987 0.3096 0.8013 0.1259 -0.7331 Computed Exact Solution Solution 0.185993E-01 -0.633214 0.185991E-01 -0.633214 0.892850 0.103135E-01 0.892850 0.103136E-01 -0.560465 0.763795 -0.560465 0.763795 TEST30 For a single precision complex (C) symmetric matrix (SI): CSIFA factors the matrix. CSIDI computes the determinant or inverse. The matrix order is N = 3 The matrix A is 0.4499 -0.1267 -0.8432 -0.3443 0.5896 0.2601 -0.8432 -0.3443 0.3911 0.3234 -0.1395 -0.1561 0.5896 0.2601 -0.1395 -0.1561 -0.2361 0.0775 Determinant = 0.943843 0.996661 * 10** -1.00000 The product inv(A) * A is 1.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 1.0000 0.0000 TEST31 For a single precision complex (C) symmetric matrix in packed storage (SP), CSPCO factors the matrix and estimates the reciprocal condition number. The matrix order is N = 3 The matrix A is 0.4499 -0.1267 -0.8432 -0.3443 0.3911 0.3234 -0.8432 -0.3443 0.5896 0.2601 -0.1395 -0.1561 0.3911 0.3234 -0.1395 -0.1561 -0.2361 0.0775 Estimated reciprocal condition number = 0.057619 TEST32 For a single precision complex (C) symmetric matrix in packed storage (SP), CSPFA factors the matrix. CSPSL solves a linear system. The matrix order is N = 3 The matrix A is 0.4499 -0.1267 -0.8432 -0.3443 0.3911 0.3234 -0.8432 -0.3443 0.5896 0.2601 -0.1395 -0.1561 0.3911 0.3234 -0.1395 -0.1561 -0.2361 0.0775 The right hand side B is -1.2874 -0.4858 0.4875 0.7468 0.1623 -0.6062 Computed Exact Solution Solution 0.185992E-01 -0.633214 0.185991E-01 -0.633214 0.892850 0.103139E-01 0.892850 0.103136E-01 -0.560465 0.763795 -0.560465 0.763795 TEST33 For a single precision complex (C) symmetric matrix in packed storage (SP), CSPFA factors the matrix. CSPDI computes the determinant or inverse. The matrix order is N = 3 The matrix A is 0.4499 -0.1267 -0.8432 -0.3443 0.3911 0.3234 -0.8432 -0.3443 0.5896 0.2601 -0.1395 -0.1561 0.3911 0.3234 -0.1395 -0.1561 -0.2361 0.0775 Determinant = 0.788527 1.04145 * 10** -1.00000 The product inv(A) * A is 1.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 1.0000 -0.0000 TEST34 For a single precision complex (C) general storage matrix, CSVDC computes the singular value decomposition: A = U * S * V^H The matrix row order is M = 4 The matrix column order is N = 3 The matrix A: 0.4499 -0.1267 -0.1395 -0.1561 -0.5605 0.7638 -0.8432 -0.3443 -0.2361 0.0775 0.3064 0.0263 0.5896 0.2601 0.0186 -0.6332 0.5008 -0.7799 0.3911 0.3234 0.8928 0.0103 0.3505 0.0166 Decompose the matrix. Singular values: 1 1.72997 0.00000 2 1.30087 0.00000 3 0.560498 0.00000 Left Singular Vector Matrix U: 0.0006 -0.3456 -0.6466 -0.1036 -0.1390 0.4739 0.3709 0.2651 -0.3518 -0.0920 0.4726 0.3090 -0.3977 -0.0478 0.3892 0.4868 0.6124 0.3271 0.1879 0.2403 0.3439 0.3499 0.0786 0.4219 0.1009 0.5061 -0.3989 0.0116 -0.0505 -0.5936 0.4616 0.0798 Right Singular Vector Matrix V: 0.5906 0.0000 -0.5855 0.0000 0.5554 0.0000 0.0170 0.5445 -0.3736 -0.0447 -0.4119 -0.6261 -0.1614 0.5731 0.1563 0.7009 0.3363 0.1295 The product U * S * V^H (should equal A): 0.4499 -0.1267 -0.1395 -0.1561 -0.5605 0.7638 -0.8432 -0.3443 -0.2361 0.0775 0.3064 0.0263 0.5896 0.2601 0.0186 -0.6332 0.5008 -0.7799 0.3911 0.3234 0.8928 0.0103 0.3505 0.0166 TEST345 For an MxN matrix A in complex general storage, CSVDC computes the singular value decomposition: A = U * S * V^H Matrix rows M = 4 Matrix columns N = 4 The matrix A: 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 -0.0000 -1.0000 -1.0000 -0.0000 1.0000 0.0000 0.0000 1.0000 -1.0000 -0.0000 -1.0000 -0.0000 1.0000 0.0000 -1.0000 -0.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000 -0.0000 -1.0000 Decompose the matrix. Singular values: 1 2.82843 0.00000 2 2.00000 0.00000 3 2.00000 0.00000 4 0.00000 0.00000 Left Singular Vector Matrix U: 0.3536 0.3536 -0.0707 0.4950 -0.3536 0.3536 0.0707 0.4950 -0.3536 -0.3536 -0.0707 0.4950 -0.3536 0.3536 -0.0707 -0.4950 -0.3536 -0.3536 -0.0707 0.4950 0.3536 -0.3536 0.0707 0.4950 0.3536 0.3536 -0.0707 0.4950 0.3536 -0.3536 -0.0707 -0.4950 Right Singular Vector Matrix V: 0.5000 0.0000 0.0000 0.0000 -0.7071 0.0000 0.5000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 -0.5000 -0.5000 0.0000 0.0000 -0.1414 0.9899 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.7071 0.0000 0.5000 The product U * S * V^H (should equal A): 1.0000 0.0000 1.0000 0.0000 1.0000 -0.0000 1.0000 0.0000 0.0000 -1.0000 -1.0000 0.0000 1.0000 0.0000 -0.0000 1.0000 -1.0000 0.0000 -1.0000 -0.0000 1.0000 0.0000 -1.0000 -0.0000 0.0000 1.0000 1.0000 -0.0000 1.0000 0.0000 0.0000 -1.0000 TEST35 For a single precision complex (C) triangular matrix (TR), CTRCO estimates the condition. The matrix order is N = 3 Estimated reciprocal condition number = 0.072614 TEST36 For a single precision complex (C) triangular matrix (TR), CTRDI computes the determinant or inverse. The matrix order is N = 3 Determinant = -7.36715 1.31082 * 10** -2.00000 The product inv(A) * A is 1.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 1.0000 0.0000 TEST37 For a single precision complex (C) triangular matrix (TR), CTRSL solves a linear system. The matrix order is N = 10 Computed Exact Solution Solution 1.00000 10.0000 1.00000 10.0000 2.00000 20.0000 2.00000 20.0000 3.00000 30.0000 3.00000 30.0000 4.00001 40.0000 4.00000 40.0000 5.00000 50.0000 5.00000 50.0000 6.00000 60.0000 6.00000 60.0000 7.00001 70.0000 7.00000 70.0000 8.00001 80.0000 8.00000 80.0000 8.99998 90.0000 9.00000 90.0000 9.99997 100.000 10.0000 100.000 LINPACK_C_PRB Normal end of execution. 27 August 2016 9:57:58.260 AM