6 February 2008 10:08:01.913 AM INT_EXACTNESS_JACOBI FORTRAN90 version Investigate the polynomial exactness of a Gauss-Jacobi quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_JACOBI: User input: Quadrature rule X file = "jac_o8_a0.5_b1.5_x.txt". Quadrature rule W file = "jac_o8_a0.5_b1.5_w.txt". Quadrature rule R file = "jac_o8_a0.5_b1.5_r.txt". Maximum degree to check = 18 Exponent of (1-x), ALPHA = 0.500000 Exponent of (1+x), BETA = 1.50000 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Jacobi rule ORDER = 8 ALPHA = 0.500000 BETA = 1.50000 Standard rule: Integral ( -1 <= x <= +1 ) (1-x)^alpha (1+x)^beta f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.7943251383316998E-02 w( 2) = 0.5574150057932281E-01 w( 3) = 0.1640573457854426 w( 4) = 0.3008492695346398 w( 5) = 0.3883180543538824 w( 6) = 0.3606436566318294 w( 7) = 0.2248513392666373 w( 8) = 0.6839190925946770E-01 Abscissas X: x( 1) = -0.8900098006603341 x( 2) = -0.6866356906720188 x( 3) = -0.4095019972429185 x( 4) = -0.8860534544266939E-01 x( 5) = 0.2412867334092741 x( 6) = 0.5444273641737976 x( 7) = 0.7879673764819101 x( 8) = 0.9455158043974036 Region R: r( 1) = -1.0000000000000000 r( 2) = 1.0000000000000000 A Gauss-Jacobi rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree Exponents 0.0000000000002273 0 0 0.0000000000002274 1 1 0.0000000000002270 2 2 0.0000000000002263 3 3 0.0000000000002263 4 4 0.0000000000002263 5 5 0.0000000000002263 6 6 0.0000000000002257 7 7 0.0000000000002258 8 8 0.0000000000002260 9 9 0.0000000000002232 10 10 0.0000000000002263 11 11 0.0000000000002163 12 12 0.0000000000002264 13 13 0.0000000000002261 14 14 0.0000000000002209 15 15 0.0003885003887301 16 16 0.0004088141345339 17 17 0.0019210596554879 18 18 INT_EXACTNESS_JACOBI: Normal end of execution. 6 February 2008 10:08:01.918 AM