6 February 2008 10:07:56.065 AM INT_EXACTNESS_JACOBI FORTRAN90 version Investigate the polynomial exactness of a Gauss-Jacobi quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_JACOBI: User input: Quadrature rule X file = "jac_o4_a0.5_b1.5_x.txt". Quadrature rule W file = "jac_o4_a0.5_b1.5_w.txt". Quadrature rule R file = "jac_o4_a0.5_b1.5_r.txt". Maximum degree to check = 10 Exponent of (1-x), ALPHA = 0.500000 Exponent of (1+x), BETA = 1.50000 Spatial dimension = 1 Number of points = 4 The quadrature rule to be tested is a Gauss-Jacobi rule ORDER = 4 ALPHA = 0.500000 BETA = 1.50000 Standard rule: Integral ( -1 <= x <= +1 ) (1-x)^alpha (1+x)^beta f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.1018214503045086 w( 2) = 0.4757517664488109 w( 3) = 0.6787436549282700 w( 4) = 0.3144794551129494 Abscissas X: x( 1) = -0.6827529985532060 x( 2) = -0.1614690409023143 x( 3) = 0.4056256275378191 x( 4) = 0.8385964119177013 Region R: r( 1) = -1.0000000000000000 r( 2) = 1.0000000000000000 A Gauss-Jacobi rule would be able to exactly integrate monomials up to and including degree = 7 Error Degree Exponents 0.0000000000002273 0 0 0.0000000000002273 1 1 0.0000000000002273 2 2 0.0000000000002269 3 3 0.0000000000002269 4 4 0.0000000000002274 5 5 0.0000000000002272 6 6 0.0000000000002271 7 7 0.0428571428573604 8 8 0.0466666666668839 9 9 0.1243809523811496 10 10 INT_EXACTNESS_JACOBI: Normal end of execution. 6 February 2008 10:07:56.070 AM