6 February 2008 10:08:07.761 AM INT_EXACTNESS_JACOBI FORTRAN90 version Investigate the polynomial exactness of a Gauss-Jacobi quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_JACOBI: User input: Quadrature rule X file = "jac_o16_a0.5_b1.5_x.txt". Quadrature rule W file = "jac_o16_a0.5_b1.5_w.txt". Quadrature rule R file = "jac_o16_a0.5_b1.5_r.txt". Maximum degree to check = 35 Exponent of (1-x), ALPHA = 0.500000 Exponent of (1+x), BETA = 1.50000 Spatial dimension = 1 Number of points = 16 The quadrature rule to be tested is a Gauss-Jacobi rule ORDER = 16 ALPHA = 0.500000 BETA = 1.50000 Standard rule: Integral ( -1 <= x <= +1 ) (1-x)^alpha (1+x)^beta f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.3988966638936207E-03 w( 2) = 0.3198240298907031E-02 w( 3) = 0.1159952258657551E-01 w( 4) = 0.2865636008049065E-01 w( 5) = 0.5581657557108236E-01 w( 6) = 0.9183919887761288E-01 w( 7) = 0.1324747827148990 w( 8) = 0.1710802448681879 w( 9) = 0.2000637064771614 w(10) = 0.2127999546344757 w(11) = 0.2054979111101689 w(12) = 0.1784862462090924 w(13) = 0.1365200311515025 w(14) = 0.8796492067198870E-01 w(15) = 0.4301699747981774E-01 w(16) = 0.1138273739868221E-01 Abscissas X: x( 1) = -0.9671984819405668 x( 2) = -0.9040845839929046 x( 3) = -0.8119779665780460 x( 4) = -0.6938290260300457 x( 5) = -0.5534333596595263 x( 6) = -0.3953028602480263 x( 7) = -0.2245197622496786 x( 8) = -0.4657307825358586E-01 x( 9) = 0.1328178890268011 x(10) = 0.3078873946321201 x(11) = 0.4730085776933708 x(12) = 0.6228743183404623 x(13) = 0.7526678154351841 x(14) = 0.8582174038957007 x(15) = 0.9361306362220502 x(16) = 0.9839033190008089 Region R: r( 1) = -1.0000000000000000 r( 2) = 1.0000000000000000 A Gauss-Jacobi rule would be able to exactly integrate monomials up to and including degree = 31 Error Degree Exponents 0.0000000000002277 0 0 0.0000000000002279 1 1 0.0000000000002279 2 2 0.0000000000002274 3 3 0.0000000000002273 4 4 0.0000000000002276 5 5 0.0000000000002279 6 6 0.0000000000002273 7 7 0.0000000000002275 8 8 0.0000000000002275 9 9 0.0000000000002251 10 10 0.0000000000002280 11 11 0.0000000000002184 12 12 0.0000000000002281 13 13 0.0000000000002281 14 14 0.0000000000002225 15 15 0.0000000000002318 16 16 0.0000000000002310 17 17 0.0000000000002258 18 18 0.0000000000002201 19 19 0.0000000000002224 20 20 0.0000000000002257 21 21 0.0000000000002202 22 22 0.0000000000002385 23 23 0.0000000000002289 24 24 0.0000000000002193 25 25 0.0000000000002255 26 26 0.0000000000002133 27 27 0.0000000000002224 28 28 0.0000000000002347 29 29 0.0000000000002346 30 30 0.0000000000002153 31 31 0.0000000149732495 32 32 0.0000000154003196 33 33 0.0000001343179509 34 34 0.0000001379400340 35 35 INT_EXACTNESS_JACOBI: Normal end of execution. 6 February 2008 10:08:07.768 AM