7 September 2007 10:34:34.851 AM INT_EXACTNESS_GEN_HERMITE FORTRAN90 version Investigate the polynomial exactness of a generalized Gauss-Hermite quadrature rule by integrating exponentially weighted monomials up to a given degree over the (-oo,oo) interval. INT_EXACTNESS_GEN_HERMITE: User input: Quadrature rule X file = "gen_herm_o8_a1.0_x.txt". Quadrature rule W file = "gen_herm_o8_a1.0_w.txt". Quadrature rule R file = "gen_herm_o8_a1.0_r.txt". Maximum degree to check = 18 Weighting function exponent ALPHA = 1.00000 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a generalized Gauss-Hermite rule ORDER = 8 A = -0.179769 ALPHA = 1.00000 OPTION = 0, standard rule: Integral ( -oo < x < oo ) |x|^alpha * exp(-x^2) * f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.2696473527806638E-03 w( 2) = 0.1944395425750270E-01 w( 3) = 0.1787093462188999 w( 4) = 0.3015770521708171 w( 5) = 0.3015770521708171 w( 6) = 0.1787093462188999 w( 7) = 0.1944395425750270E-01 w( 8) = 0.2696473527806638E-03 Abscissas X: x( 1) = -3.065137992375079 x( 2) = -2.129934340988268 x( 3) = -1.321272530993643 x( 4) = -0.5679328213965031 x( 5) = 0.5679328213965031 x( 6) = 1.321272530993643 x( 7) = 2.129934340988268 x( 8) = 3.065137992375079 Region R: r( 1) = -0.1797693134862000 r( 2) = 0.1797693134862000 A generalized Gauss-Hermite rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree Exponents 0.0000000000000007 0 0 0.0000000000000000 1 1 0.0000000000000007 2 2 0.0000000000000000 3 3 0.0000000000000007 4 4 0.0000000000000001 5 5 0.0000000000000004 6 6 0.0000000000000003 7 7 0.0000000000000001 8 8 0.0000000000000019 9 9 0.0000000000000007 10 10 0.0000000000000041 11 11 0.0000000000000013 12 12 0.0000000000000146 13 13 0.0000000000000018 14 14 0.0000000000003948 15 15 0.0142857142857165 16 16 0.0000000000021281 17 17 0.0650793650793677 18 18 INT_EXACTNESS_GEN_HERMITE: Normal end of execution. 7 September 2007 10:34:34.868 AM