25 February 2008 12:10:24.489 PM INT_EXACTNESS_CHEBYSHEV2 FORTRAN90 version Investigate the polynomial exactness of a Gauss-Chebyshev type 2 quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_CHEBYSHEV2: User input: Quadrature rule X file = "cheby2_o8_x.txt". Quadrature rule W file = "cheby2_o8_w.txt". Quadrature rule R file = "cheby2_o8_r.txt". Maximum degree to check = 18 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Chebyshev type 2 rule ORDER = 8 Standard rule: Integral ( -1 <= x <= +1 ) f(x) * sqrt ( 1 - x^2 ) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.4083294770910712E-01 w( 2) = 0.1442256007956728 w( 3) = 0.2617993877991495 w( 4) = 0.3385402270935190 w( 5) = 0.3385402270935190 w( 6) = 0.2617993877991494 w( 7) = 0.1442256007956728 w( 8) = 0.4083294770910708E-01 Abscissas X: x( 1) = -0.9396926207859084 x( 2) = -0.7660444431189779 x( 3) = -0.4999999999999998 x( 4) = -0.1736481776669303 x( 5) = 0.1736481776669304 x( 6) = 0.5000000000000001 x( 7) = 0.7660444431189780 x( 8) = 0.9396926207859084 Region R: r( 1) = -1.0000000000000000 r( 2) = 1.0000000000000000 A Gauss-Chebyshev type 2 rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 0.0000000000000001 0 0.0000000000000000 1 0.0000000000000000 2 0.0000000000000001 3 0.0000000000000000 4 0.0000000000000000 5 0.0000000000000001 6 0.0000000000000000 7 0.0000000000000000 8 0.0000000000000000 9 0.0000000000000002 10 0.0000000000000000 11 0.0000000000000003 12 0.0000000000000000 13 0.0000000000000005 14 0.0000000000000000 15 0.0006993006993000 16 0.0000000000000000 17 0.0032908268202379 18 INT_EXACTNESS_CHEBYSHEV2: Normal end of execution. 25 February 2008 12:10:24.496 PM