25 February 2008 12:10:28.967 PM INT_EXACTNESS_CHEBYSHEV2 FORTRAN90 version Investigate the polynomial exactness of a Gauss-Chebyshev type 2 quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_CHEBYSHEV2: User input: Quadrature rule X file = "cheby2_o16_x.txt". Quadrature rule W file = "cheby2_o16_w.txt". Quadrature rule R file = "cheby2_o16_r.txt". Maximum degree to check = 35 Spatial dimension = 1 Number of points = 16 The quadrature rule to be tested is a Gauss-Chebyshev type 2 rule ORDER = 16 Standard rule: Integral ( -1 <= x <= +1 ) f(x) * sqrt ( 1 - x^2 ) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.6239551412252139E-02 w( 2) = 0.2411551965623602E-01 w( 3) = 0.5121365616644202E-01 w( 4) = 0.8387420745120885E-01 w( 5) = 0.1176861850811667 w( 6) = 0.1480830941187536 w( 7) = 0.1709596635633560 w( 8) = 0.1832262859480331 w( 9) = 0.1832262859480331 w(10) = 0.1709596635633560 w(11) = 0.1480830941187536 w(12) = 0.1176861850811666 w(13) = 0.8387420745120885E-01 w(14) = 0.5121365616644197E-01 w(15) = 0.2411551965623597E-01 w(16) = 0.6239551412252137E-02 Abscissas X: x( 1) = -0.9829730996839018 x( 2) = -0.9324722294043556 x( 3) = -0.8502171357296140 x( 4) = -0.7390089172206593 x( 5) = -0.6026346363792563 x( 6) = -0.4457383557765379 x( 7) = -0.2736629900720829 x( 8) = -0.9226835946330189E-01 x( 9) = 0.9226835946330203E-01 x(10) = 0.2736629900720830 x(11) = 0.4457383557765384 x(12) = 0.6026346363792564 x(13) = 0.7390089172206592 x(14) = 0.8502171357296141 x(15) = 0.9324722294043558 x(16) = 0.9829730996839018 Region R: r( 1) = -1.0000000000000000 r( 2) = 1.0000000000000000 A Gauss-Chebyshev type 2 rule would be able to exactly integrate monomials up to and including degree = 31 Error Degree 0.0000000000000001 0 0.0000000000000001 1 0.0000000000000003 2 0.0000000000000000 3 0.0000000000000003 4 0.0000000000000000 5 0.0000000000000005 6 0.0000000000000000 7 0.0000000000000003 8 0.0000000000000000 9 0.0000000000000004 10 0.0000000000000000 11 0.0000000000000003 12 0.0000000000000000 13 0.0000000000000003 14 0.0000000000000000 15 0.0000000000000000 16 0.0000000000000000 17 0.0000000000000002 18 0.0000000000000000 19 0.0000000000000003 20 0.0000000000000000 21 0.0000000000000005 22 0.0000000000000000 23 0.0000000000000007 24 0.0000000000000000 25 0.0000000000000006 26 0.0000000000000000 27 0.0000000000000004 28 0.0000000000000000 29 0.0000000000000005 30 0.0000000000000000 31 0.0000000282824071 32 0.0000000000000000 33 0.0000002468282765 34 0.0000000000000000 35 INT_EXACTNESS_CHEBYSHEV2: Normal end of execution. 25 February 2008 12:10:28.976 PM