25 February 2008 12:07:00.443 PM INT_EXACTNESS_CHEBYSHEV1 FORTRAN90 version Investigate the polynomial exactness of a Gauss-Chebyshev type 1 quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_CHEBYSHEV1: User input: Quadrature rule X file = "cheby1_o16_x.txt". Quadrature rule W file = "cheby1_o16_w.txt". Quadrature rule R file = "cheby1_o16_r.txt". Maximum degree to check = 35 Spatial dimension = 1 Number of points = 16 The quadrature rule to be tested is a Gauss-Chebyshev type 1 rule ORDER = 16 Standard rule: Integral ( -1 <= x <= +1 ) f(x) / sqrt ( 1 - x^2 ) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.1963495408493621 w( 2) = 0.1963495408493621 w( 3) = 0.1963495408493621 w( 4) = 0.1963495408493621 w( 5) = 0.1963495408493621 w( 6) = 0.1963495408493621 w( 7) = 0.1963495408493621 w( 8) = 0.1963495408493621 w( 9) = 0.1963495408493621 w(10) = 0.1963495408493621 w(11) = 0.1963495408493621 w(12) = 0.1963495408493621 w(13) = 0.1963495408493621 w(14) = 0.1963495408493621 w(15) = 0.1963495408493621 w(16) = 0.1963495408493621 Abscissas X: x( 1) = 0.9951847266721968 x( 2) = 0.9569403357322088 x( 3) = 0.8819212643483550 x( 4) = 0.7730104533627370 x( 5) = 0.6343932841636455 x( 6) = 0.4713967368259978 x( 7) = 0.2902846772544623 x( 8) = 0.9801714032956076E-01 x( 9) = -0.9801714032956065E-01 x(10) = -0.2902846772544622 x(11) = -0.4713967368259977 x(12) = -0.6343932841636454 x(13) = -0.7730104533627370 x(14) = -0.8819212643483549 x(15) = -0.9569403357322088 x(16) = -0.9951847266721968 Region R: r( 1) = -1.0000000000000000 r( 2) = 1.0000000000000000 A Gauss-Chebyshev type 1 rule would be able to exactly integrate monomials up to and including degree = 31 Error Degree 0.0000000000000004 0 0.0000000000000001 1 0.0000000000000000 2 0.0000000000000001 3 0.0000000000000000 4 0.0000000000000001 5 0.0000000000000002 6 0.0000000000000001 7 0.0000000000000001 8 0.0000000000000001 9 0.0000000000000001 10 0.0000000000000001 11 0.0000000000000002 12 0.0000000000000001 13 0.0000000000000005 14 0.0000000000000001 15 0.0000000000000004 16 0.0000000000000001 17 0.0000000000000008 18 0.0000000000000000 19 0.0000000000000008 20 0.0000000000000000 21 0.0000000000000006 22 0.0000000000000000 23 0.0000000000000013 24 0.0000000000000000 25 0.0000000000000009 26 0.0000000000000000 27 0.0000000000000011 28 0.0000000000000000 29 0.0000000000000012 30 0.0000000000000000 31 0.0000000033273433 32 0.0000000000000000 33 0.0000000291394506 34 0.0000000000000000 35 INT_EXACTNESS_CHEBYSHEV1: Normal end of execution. 25 February 2008 12:07:00.452 PM