program main !*****************************************************************************80 ! !! MAIN is the main program for FFTPACK5.1_TEST. ! ! Discussion: ! ! FFTPACK5.1_TEST tests the FFTPACK5.1 library. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2011 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FFTPACK5.1_TEST' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test the FFTPACK5.1 library.' call test01 ( ) call test02 ( ) call test03 ( ) call test04 ( ) call test05 ( ) call test06 ( ) call test07 ( ) call test09 ( ) call test10 ( ) call test11 ( ) call test12 ( ) call test13 ( ) call test14 ( ) call test15 ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FFTPACK5.1_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine test01 ( ) !*****************************************************************************80 ! !! TEST01 tests CFFT1B, CFFT1F and CFFT1I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 4096 complex ( kind = 4 ) c(n) integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) lenc integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) ' For complex single precision fast Fourier transforms, 1D,' write ( *, '(a)' ) ' CFFT1I initializes the transform,' write ( *, '(a)' ) ' CFFT1F does a forward transform;' write ( *, '(a)' ) ' CFFT1B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of data items is N = ', n ! ! Allocate the work arrays. ! lenwrk = 2 * n lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call cfft1i ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call c4vec_uniform_01 ( n, seed, c ) call c4vec_print_part ( n, c, 10, ' The original data:' ) ! ! Compute the FFT coefficients. ! inc = 1 lenc = n call cfft1f ( n, inc, c, lenc, wsave, lensav, work, lenwrk, ier ) call c4vec_print_part ( n, c, 10, ' The FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call cfft1b ( n, inc, c, lenc, wsave, lensav, work, lenwrk, ier ) call c4vec_print_part ( n, c, 10, ' The retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test02 ( ) !*****************************************************************************80 ! !! TEST02 tests CFFT2B, CFFT2F and CFFT2I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: l = 32 integer ( kind = 4 ), parameter :: m = 64 complex ( kind = 4 ) c(l,m) integer ( kind = 4 ) ier integer ( kind = 4 ) ldim integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST02' write ( *, '(a)' ) ' For complex single precision fast Fourier transforms, 2D,' write ( *, '(a)' ) ' CFFT2I initializes the transform,' write ( *, '(a)' ) ' CFFT2F does a forward transform;' write ( *, '(a)' ) ' CFFT2B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The data is stored in an L by M array, with' write ( *, '(a,i8)' ) ' L = ', l write ( *, '(a,i8)' ) ' M = ', m ! ! Allocate work arrays. ! lenwrk = 2 * l * m lensav = 2 * l + int ( log ( real ( l, kind = 4 ) ) / log ( 2.0E+00 ) ) & + 2 * m + int ( log ( real ( m, kind = 4 ) ) / log ( 2.0E+00 ) ) & + 8 write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call cfft2i ( l, m, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call c4mat_uniform_01 ( l, m, seed, c ) call c4mat_print_some ( l, m, c, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! ldim = l call cfft2f ( ldim, l, m, c, wsave, lensav, work, lenwrk, ier ) call c4mat_print_some ( l, m, c, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call cfft2b ( ldim, l, m, c, wsave, lensav, work, lenwrk, ier ) call c4mat_print_some ( l, m, c, 1, 1, 5, 5, ' Part of the retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test03 ( ) !*****************************************************************************80 ! !! TEST03 tests CFFTMB, CFFTMF and CFFTMI. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 32 integer ( kind = 4 ), parameter :: lot = 6 complex ( kind = 4 ), allocatable, dimension ( : ) :: c integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lenc integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST03' write ( *, '(a)' ) ' For complex single precision fast Fourier transforms, 1D, multiple' write ( *, '(a)' ) ' CFFTMI initializes the transform,' write ( *, '(a)' ) ' CFFTMF does a forward transform;' write ( *, '(a)' ) ' CFFTMB does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of sequences is LOT = ', lot write ( *, '(a,i8)' ) ' The length of each sequence is N = ', n ! ! Set work vectors. ! lenc = n * lot lenwrk = 2 * lot * n lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENC = ', lenc write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( c(1:lenc) ) allocate ( wsave(1:lensav) ) allocate ( work(1:lenwrk) ) call cfftmi ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call c4mat_uniform_01 ( n, lot, seed, c ) call c4mat_print_some ( n, lot, c, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! jump = n inc = 1 call cfftmf ( lot, jump, n, inc, c, lenc, wsave, lensav, work, lenwrk, ier ) call c4mat_print_some ( n, lot, c, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call cfftmb ( lot, jump, n, inc, c, lenc, wsave, lensav, work, lenwrk, ier ) call c4mat_print_some ( n, lot, c, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( c ) deallocate ( wsave ) deallocate ( work ) return end subroutine test04 ( ) !*****************************************************************************80 ! !! TEST04 tests COSQ1B, COSQ1F and COSQ1I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 4096 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ) r(n) integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST04' write ( *, '(a)' ) ' For real single precision fast cosine transforms, 1D,' write ( *, '(a)' ) ' COSQ1I initializes the transform,' write ( *, '(a)' ) ' COSQ1F does a forward transform;' write ( *, '(a)' ) ' COSQ1B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of data items is N = ', n ! ! Set work vectors. ! lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 lenwrk = n write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call cosq1i ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4vec_uniform_01 ( n, seed, r ) call r4vec_print_part ( n, r, 10, ' The original data:' ) ! ! Compute the FFT coefficients. ! inc = 1 lenr = n call cosq1f ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call cosq1b ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test05 ( ) !*****************************************************************************80 ! !! TEST05 tests COSQMB, COSQMF and COSQMI. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 32 integer ( kind = 4 ), parameter :: lot = 6 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ), allocatable, dimension ( : ) :: r integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST05' write ( *, '(a)' ) ' For real single precision fast cosine transform, 1D, multiple' write ( *, '(a)' ) ' COSQMI initializes the transform,' write ( *, '(a)' ) ' COSQMF does a forward transform;' write ( *, '(a)' ) ' COSQMB does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of sequences is LOT = ', lot write ( *, '(a,i8)' ) ' The length of each sequence is N = ', n ! ! Set work arrays. ! lenr = n * lot lenwrk = lot * n lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENR = ', lenr write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( r(lenr) ) allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call cosqmi ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4mat_uniform_01 ( n, lot, seed, r ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! jump = n inc = 1 call cosqmf ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call cosqmb ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( r ) deallocate ( work ) deallocate ( wsave ) return end subroutine test06 ( ) !*****************************************************************************80 ! !! TEST06 tests COST1B, COST1F and COST1I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 4096 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ) r(n) integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST06' write ( *, '(a)' ) ' For real single precision fast cosine transforms, 1D,' write ( *, '(a)' ) ' COST1I initializes the transform,' write ( *, '(a)' ) ' COST1F does a forward transform;' write ( *, '(a)' ) ' COST1B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of data items is N = ', n ! ! Set work arrays. ! lenwrk = n - 1 lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call cost1i ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4vec_uniform_01 ( n, seed, r ) call r4vec_print_part ( n, r, 10, ' The original data:' ) ! ! Compute the FFT coefficients. ! inc = 1 lenr = n call cost1f ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. ! call cost1b ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test07 ( ) !*****************************************************************************80 ! !! TEST07 tests COSTMB, COSTMF and COSTMI. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 32 integer ( kind = 4 ), parameter :: lot = 6 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ), allocatable, dimension ( : ) :: r integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST07' write ( *, '(a)' ) ' For real single precision fast cosine transforms, 1D, multiple' write ( *, '(a)' ) ' COSTMI initializes the transform,' write ( *, '(a)' ) ' COSTMF does a forward transform;' write ( *, '(a)' ) ' COSTMB does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of sequences is LOT = ', lot write ( *, '(a,i8)' ) ' The length of each sequence is N = ', n ! ! Set work arrays. ! lenr = n * lot lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 lenwrk = lot * ( n + 1 ) write ( *, '(a,i8)' ) ' LENR = ', lenr write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( r(1:lenr) ) allocate ( wsave(1:lensav) ) allocate ( work(1:lenwrk) ) call costmi ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4mat_uniform_01 ( n, lot, seed, r ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! jump = n inc = 1 call costmf ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call costmb ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( r ) deallocate ( work ) deallocate ( wsave ) return end subroutine test09 ( ) !*****************************************************************************80 ! !! TEST09 tests RFFT1B, RFFT1F and RFFT1I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 4096 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ) r(n) integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST09' write ( *, '(a)' ) ' For real single precision fast cosine transforms, 1D,' write ( *, '(a)' ) ' RFFT1I initializes the transform,' write ( *, '(a)' ) ' RFFT1F does a forward transform;' write ( *, '(a)' ) ' RFFT1B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of data items is N = ', n ! ! Set work vectors. ! lensav = n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 lenwrk = n write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call rfft1i ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4vec_uniform_01 ( n, seed, r ) call r4vec_print_part ( n, r, 10, ' The original data:' ) ! ! Compute the FFT coefficients. ! inc = 1 lenr = n call rfft1f ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call rfft1b ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test10 ( ) !*****************************************************************************80 ! !! TEST10 tests RFFT2B, RFFT2F and RFFT2I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 01 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: l = 32 integer ( kind = 4 ), parameter :: m = 64 integer ( kind = 4 ), parameter :: ldim = 2 * ( l / 2 + 1 ) integer ( kind = 4 ) ier integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ) r(ldim,m) integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST10' write ( *, '(a)' ) ' For real single precision fast Fourier transform, 2D,' write ( *, '(a)' ) ' RFFT2I initializes the transform,' write ( *, '(a)' ) ' RFFT2F does a forward transform;' write ( *, '(a)' ) ' RFFT2B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The L by M data is stored in an LDIM by M array, with' write ( *, '(a,i8)' ) ' L = ', l write ( *, '(a,i8)' ) ' LDIM = ', ldim write ( *, '(a,i8)' ) ' M = ', m ! ! Set work arrays. ! lenwrk = 2 * ldim * m lensav = & l + int ( log ( real ( l, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 & + 2 * m + int ( log ( real ( m, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 & + m + int ( log ( real ( m, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call rfft2i ( l, m, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4mat_uniform_01 ( ldim, m, seed, r ) call r4mat_print_some ( ldim, m, r, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! call rfft2f ( ldim, l, m, r, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( ldim, m, r, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call rfft2b ( ldim, l, m, r, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( ldim, m, r, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test11 ( ) !*****************************************************************************80 ! !! TEST11 tests RFFTMB, RFFTMF and RFFTMI. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 32 integer ( kind = 4 ), parameter :: lot = 6 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ), allocatable, dimension ( : ) :: r integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST11' write ( *, '(a)' ) ' For real single precision fast Fourier transform, 1D, multiple' write ( *, '(a)' ) ' RFFTMI initializes the transform,' write ( *, '(a)' ) ' RFFTMF does a forward transform;' write ( *, '(a)' ) ' RFFTMB does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of sequences is LOT = ', lot write ( *, '(a,i8)' ) ' The length of each sequence is N = ', n ! ! Set work arrays. ! lenr = n * lot lenwrk = lot * n lensav = n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENR = ', lenr write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( r(1:lenr) ) allocate ( wsave(1:lensav) ) allocate ( work(1:lenwrk) ) call rfftmi ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4mat_uniform_01 ( n, lot, seed, r ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! jump = n inc = 1 call rfftmf ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call rfftmb ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( r ) deallocate ( work ) deallocate ( wsave ) return end subroutine test12 ( ) !*****************************************************************************80 ! !! TEST12 tests SINQ1B, SINQ1F and SINQ1I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 4096 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ) r(n) integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST12' write ( *, '(a)' ) ' For real single precision fast sine transforms, 1D,' write ( *, '(a)' ) ' SINQ1I initializes the transform,' write ( *, '(a)' ) ' SINQ1F does a forward transform;' write ( *, '(a)' ) ' SINQ1B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of data items is N = ', n ! ! Set work arrays. ! lenwrk = n lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( work(1:lenwrk) ) allocate ( wsave(1:lensav) ) call sinq1i ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4vec_uniform_01 ( n, seed, r ) call r4vec_print_part ( n, r, 10, ' The original data:' ) ! ! Compute the FFT coefficients. ! inc = 1 lenr = n call sinq1f ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call sinq1b ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test13 ( ) !*****************************************************************************80 ! !! TEST13 tests SINQMB, SINQMF and SINQMI. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 32 integer ( kind = 4 ), parameter :: lot = 6 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ), allocatable, dimension ( : ) :: r integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST13' write ( *, '(a)' ) ' For real single precision fast sine transforms, 1D, multiple' write ( *, '(a)' ) ' SINQMI initializes the transform,' write ( *, '(a)' ) ' SINQMF does a forward transform;' write ( *, '(a)' ) ' SINQMB does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of sequences is LOT = ', lot write ( *, '(a,i8)' ) ' The length of each sequence is N = ', n ! ! Set work arrays. ! lenr = n * lot lenwrk = lot * n lensav = 2 * n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENR = ', lenr write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( r(1:lenr) ) allocate ( wsave(1:lensav) ) allocate ( work(1:lenwrk) ) call sinqmi ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4mat_uniform_01 ( n, lot, seed, r ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! jump = n inc = 1 call sinqmf ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call sinqmb ( lot, jump, n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( r ) deallocate ( work ) deallocate ( wsave ) return end subroutine test14 ( ) !*****************************************************************************80 ! !! TEST14 tests SINT1B, SINT1F and SINT1I. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 4096 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ) r(n) integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST14' write ( *, '(a)' ) ' For real single precision fast sine transforms, 1D,' write ( *, '(a)' ) ' SINT1I initializes the transform,' write ( *, '(a)' ) ' SINT1F does a forward transform;' write ( *, '(a)' ) ' SINT1B does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of data items is N = ', n ! ! Set work arrays. ! lenwrk = 2 * ( n + 1 ) lensav = n / 2 + n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( wsave(1:lensav) ) allocate ( work(1:lenwrk) ) call sint1i ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4vec_uniform_01 ( n, seed, r ) call r4vec_print_part ( n, r, 10, ' The original data:' ) ! ! Compute the FFT coefficients. ! inc = 1 lenr = n call sint1f ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call sint1b ( n, inc, r, lenr, wsave, lensav, work, lenwrk, ier ) call r4vec_print_part ( n, r, 10, ' The retrieved data:' ) deallocate ( work ) deallocate ( wsave ) return end subroutine test15 ( ) !*****************************************************************************80 ! !! TEST15 tests SINTMB, SINTMF and SINTMI. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 August 2011 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: n = 32 integer ( kind = 4 ), parameter :: lot = 6 integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk real ( kind = 4 ), allocatable, dimension ( : ) :: r integer ( kind = 4 ) seed real ( kind = 4 ), allocatable, dimension ( : ) :: work real ( kind = 4 ), allocatable, dimension ( : ) :: wsave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST15' write ( *, '(a)' ) ' For real single precision fast sine transforms, 1D, multiple' write ( *, '(a)' ) ' SINTMI initializes the transform,' write ( *, '(a)' ) ' SINTMF does a forward transform;' write ( *, '(a)' ) ' SINTMB does a backward transform.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of sequences is LOT = ', lot write ( *, '(a,i8)' ) ' The length of each sequence is N = ', n ! ! Set work arrays. ! lenr = n * lot lenwrk = lot * 2 * ( n + 2 ) lensav = n / 2 + n + int ( log ( real ( n, kind = 4 ) ) / log ( 2.0E+00 ) ) + 4 write ( *, '(a,i8)' ) ' LENR = ', lenr write ( *, '(a,i8)' ) ' LENSAV = ', lensav write ( *, '(a,i8)' ) ' LENWRK = ', lenwrk allocate ( r(1:lenr) ) allocate ( wsave(1:lensav) ) allocate ( work(1:lenwrk) ) call sintmi ( n, wsave, lensav, ier ) ! ! Set the data values. ! seed = 1973 call r4mat_uniform_01 ( n, lot, seed, r ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the original data:' ) ! ! Compute the FFT coefficients. ! jump = n inc = 1 call sintmf ( lot, jump, n, inc, r, lenr, wsave, lensav, & work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the FFT coefficients:' ) ! ! Compute inverse FFT of coefficients. Should get back the ! original data. ! call sintmb ( lot, jump, n, inc, r, lenr, wsave, lensav, & work, lenwrk, ier ) call r4mat_print_some ( n, lot, r, 1, 1, 5, 5, & ' Part of the retrieved data:' ) deallocate ( r ) deallocate ( work ) deallocate ( wsave ) return end subroutine c4mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! C4MAT_PRINT_SOME prints some of a C4MAT. ! ! Discussion: ! ! A C4MAT is a matrix of C4's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 21 June 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns ! in the matrix. ! ! Input, complex ( kind = 4 ) A(M,N), the matrix. ! ! Input, integer ( kind = 4 ) ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 4 integer ( kind = 4 ) m integer ( kind = 4 ) n complex ( kind = 4 ) a(m,n) character ( len = 20 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title complex ( kind = 4 ) zero zero = cmplx ( 0.0E+00, 0.0E+00, kind = 4 ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) if ( m <= 0 .or. n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if ! ! Print the columns of the matrix, in strips of INCX. ! do j2lo = jlo, min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i10,10x)' ) j end do write ( *, '(a,4a20)' ) ' Col: ', ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) INCX entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 if ( a(i,j) == zero ) then ctemp(j2) = ' 0.0 ' else if ( imag ( a(i,j) ) == 0.0E+00 ) then write ( ctemp(j2), '(g10.3,10x)' ) real ( a(i,j), kind = 4 ) else write ( ctemp(j2), '(2g10.3)' ) a(i,j) end if end do write ( *, '(i5,a1,4a20)' ) i, ':', ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine c4mat_uniform_01 ( m, n, seed, c ) !*****************************************************************************80 ! !! C4MAT_UNIFORM_01 returns a unit pseudorandom C4MAT. ! ! Discussion: ! ! A C4MAT is a matrix of C4's. ! ! The angles should be uniformly distributed between 0 and 2 * PI, ! the square roots of the radius uniformly distributed between 0 and 1. ! ! This results in a uniform distribution of values in the unit circle. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 13 December 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns ! in the matrix. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, complex ( kind = 4 ) C(M,N), the pseudorandom complex matrix. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n complex ( kind = 4 ) c(m,n) integer ( kind = 4 ) i integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) j integer ( kind = 4 ) k real ( kind = 4 ) r real ( kind = 4 ), parameter :: r4_pi = 3.141592653589793E+00 integer ( kind = 4 ) seed real ( kind = 4 ) theta do j = 1, n do i = 1, m k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r = sqrt ( real ( seed, kind = 4 ) * 4.656612875E-10 ) k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if theta = 2.0E+00 * r4_pi * ( real ( seed, kind = 4 ) * 4.656612875E-10 ) c(i,j) = r * cmplx ( cos ( theta ), sin ( theta ), kind = 4 ) end do end do return end subroutine c4vec_print_part ( n, a, max_print, title ) !*****************************************************************************80 ! !! C4VEC_PRINT_PART prints "part" of a C4VEC. ! ! Discussion: ! ! The user specifies MAX_PRINT, the maximum number of lines to print. ! ! If N, the size of the vector, is no more than MAX_PRINT, then ! the entire vector is printed, one entry per line. ! ! Otherwise, if possible, the first MAX_PRINT-2 entries are printed, ! followed by a line of periods suggesting an omission, ! and the last entry. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 22 June 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries of the vector. ! ! Input, complex ( kind = 4 ) A(N), the vector to be printed. ! ! Input, integer ( kind = 4 ) MAX_PRINT, the maximum number of lines ! to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) n complex ( kind = 4 ) a(n) integer ( kind = 4 ) i integer ( kind = 4 ) max_print character ( len = * ) title if ( max_print <= 0 ) then return end if if ( n <= 0 ) then return end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' if ( n <= max_print ) then do i = 1, n write ( *, '(2x,i8,a,1x,g14.6,2x,g14.6)' ) i, ':', a(i) end do else if ( 3 <= max_print ) then do i = 1, max_print - 2 write ( *, '(2x,i8,a,1x,g14.6,2x,g14.6)' ) i, ':', a(i) end do write ( *, '(a)' ) ' ........ .............. ..............' i = n write ( *, '(2x,i8,a,1x,g14.6,2x,g14.6)' ) i, ':', a(i) else do i = 1, max_print - 1 write ( *, '(2x,i8,a,1x,g14.6,2x,g14.6)' ) i, ':', a(i) end do i = max_print write ( *, '(2x,i8,a,1x,g14.6,2x,g14.6,2x,a)' ) i, ':', a(i), & '...more entries...' end if return end subroutine c4vec_uniform_01 ( n, seed, c ) !*****************************************************************************80 ! !! C4VEC_UNIFORM_01 returns a unit pseudorandom C4VEC. ! ! Discussion: ! ! A C4VEC is a vector of C4's. ! ! The angles should be uniformly distributed between 0 and 2 * PI, ! the square roots of the radius uniformly distributed between 0 and 1. ! ! This results in a uniform distribution of values in the unit circle. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 13 December 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of values to compute. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which should ! NOT be 0. On output, SEED has been updated. ! ! Output, complex ( kind = 4 ) C(N), the pseudorandom complex vector. ! implicit none integer ( kind = 4 ) n complex ( kind = 4 ) c(n) integer ( kind = 4 ) i integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) k real ( kind = 4 ) r real ( kind = 4 ), parameter :: r4_pi = 3.141592653589793E+00 integer ( kind = 4 ) seed real ( kind = 4 ) theta do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r = sqrt ( real ( seed, kind = 4 ) * 4.656612875E-10 ) k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if theta = 2.0E+00 * r4_pi * ( real ( seed, kind = 4 ) * 4.656612875E-10 ) c(i) = r * cmplx ( cos ( theta ), sin ( theta ), kind = 4 ) end do return end subroutine r4mat_print ( m, n, a, title ) !*****************************************************************************80 ! !! R4MAT_PRINT prints an R4MAT. ! ! Discussion: ! ! An R4MAT is an array of R4 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 27 January 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows in A. ! ! Input, integer ( kind = 4 ) N, the number of columns in A. ! ! Input, real ( kind = 4 ) A(M,N), the matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 4 ) a(m,n) character ( len = * ) title call r4mat_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r4mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R4MAT_PRINT_SOME prints some of an R4MAT. ! ! Discussion: ! ! An R4MAT is an array of R4 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 10 September 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 4 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 4 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i8,6x)' ) j end do write ( *, '('' Col '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 if ( a(i,j) == real ( int ( a(i,j) ), kind = 4 ) ) then write ( ctemp(j2), '(f8.0,6x)' ) a(i,j) else write ( ctemp(j2), '(g14.6)' ) a(i,j) end if end do write ( *, '(i5,a,5a14)' ) i, ':', ( ctemp(j), j = 1, inc ) end do end do return end subroutine r4mat_uniform_01 ( m, n, seed, r ) !*****************************************************************************80 ! !! R4MAT_UNIFORM_01 fills an R4MAT with unit pseudorandom numbers. ! ! Discussion: ! ! An R4MAT is an array of R4 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 03 May 2011 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller, ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns in ! the array. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = 4 ) R(M,N), the array of pseudorandom values. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) seed real ( kind = 4 ) r(m,n) do j = 1, n do i = 1, m k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r(i,j) = real ( seed, kind = 4 ) * 4.656612875E-10 end do end do return end subroutine r4vec_print_part ( n, a, max_print, title ) !*****************************************************************************80 ! !! R4VEC_PRINT_PART prints "part" of an R4VEC. ! ! Discussion: ! ! The user specifies MAX_PRINT, the maximum number of lines to print. ! ! If N, the size of the vector, is no more than MAX_PRINT, then ! the entire vector is printed, one entry per line. ! ! Otherwise, if possible, the first MAX_PRINT-2 entries are printed, ! followed by a line of periods suggesting an omission, ! and the last entry. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 June 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries of the vector. ! ! Input, real ( kind = 4 ) A(N), the vector to be printed. ! ! Input, integer ( kind = 4 ) MAX_PRINT, the maximum number of lines ! to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) n real ( kind = 4 ) a(n) integer ( kind = 4 ) i integer ( kind = 4 ) max_print character ( len = * ) title if ( max_print <= 0 ) then return end if if ( n <= 0 ) then return end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' if ( n <= max_print ) then do i = 1, n write ( *, '(2x,i8,a,1x,g14.6)' ) i, ':', a(i) end do else if ( 3 <= max_print ) then do i = 1, max_print - 2 write ( *, '(2x,i8,a,1x,g14.6)' ) i, ':', a(i) end do write ( *, '(a)' ) ' ........ ..............' i = n write ( *, '(2x,i8,a,1x,g14.6)' ) i, ':', a(i) else do i = 1, max_print - 1 write ( *, '(2x,i8,a,1x,g14.6)' ) i, ':', a(i) end do i = max_print write ( *, '(2x,i8,a,1x,g14.6,2x,a)' ) i, ':', a(i), '...more entries...' end if return end subroutine r4vec_uniform_01 ( n, seed, r ) !*****************************************************************************80 ! !! R4VEC_UNIFORM_01 returns a unit pseudorandom R4VEC. ! ! Discussion: ! ! An R4VEC is an array of R4's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 May 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Second Edition, ! Springer, 1987, ! ISBN: 0387964673, ! LC: QA76.9.C65.B73. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, December 1986, pages 362-376. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley, 1998, ! ISBN: 0471134031, ! LC: T57.62.H37. ! ! Peter Lewis, Allen Goodman, James Miller, ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, Number 2, 1969, pages 136-143. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries in the vector. ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, ! which should NOT be 0. ! On output, SEED has been updated. ! ! Output, real ( kind = 4 ) R(N), the vector of pseudorandom values. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) i integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) k integer ( kind = 4 ) seed real ( kind = 4 ) r(n) if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R4VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r(i) = real ( seed, kind = 4 ) * 4.656612875E-10 end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end