April 29 2007 8:21:01.925 AM FEM1D FORTRAN90 version. Solve the two-point boundary value problem - d/dX (P dU/dX) + Q U = F on the interval [XL,XR], specifying the value of U or U' at each end. The interval [XL,XR] is broken into NSUB = 5 subintervals Number of basis functions per element is NL = 2 The equation is to be solved for X greater than XL = .000000 and less than XR = 1.00000 The boundary conditions are: At X = XL, U= .000000 At X = XR, U'= 1.00000 Number of quadrature points per element is 1 Node Location 0 .000000 1 .200000 2 .400000 3 .600000 4 .800000 5 1.00000 Subint Length 1 .200000 2 .200000 3 .200000 4 .200000 5 .200000 Subint Quadrature point 1 .100000 2 .300000 3 .500000 4 .700000 5 .900000 Subint Left Node Right Node 1 0 1 2 1 2 3 2 3 4 3 4 5 4 5 Number of unknowns NU = 5 Node Unknown 0 -1 1 1 2 2 3 3 4 4 5 5 Printout of tridiagonal linear system: Equation ALEFT ADIAG ARITE RHS 1 .000000 10.0000 -5.00000 .000000 2 -5.00000 10.0000 -5.00000 .000000 3 -5.00000 10.0000 -5.00000 .000000 4 -5.00000 10.0000 -5.00000 .000000 5 -5.00000 5.00000 .000000 1.00000 Computed solution coefficients: Node X(I) U(X(I)) 0 0.00 .000000 1 0.20 .200000 2 0.40 .400000 3 0.60 .600000 4 0.80 .800000 5 1.00 1.00000 FEM1D: Normal end of execution. April 29 2007 8:21:01.926 AM