program main !*****************************************************************************80 ! !! MAIN is the main program for FAURE_TEST. ! ! Discussion: ! ! FAURE_TEST tests the FAURE library. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 June 2007 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FAURE_TEST' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test the FAURE library.' call test005 ( ) call test006 ( ) call test01 ( ) call test02 ( ) call test03 ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FAURE_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine test005 ( ) !*****************************************************************************80 ! !! TEST005 tests BINOMIAL_TABLE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 08 June 2007 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: m = 10 integer ( kind = 4 ), parameter :: n = 7 integer ( kind = 4 ), dimension ( 0:m, 0:n ) :: coef integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ), parameter :: qs = 7 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST005' write ( *, '(a)' ) ' BINOMIAL_TABLE computes a table of binomial.' write ( *, '(a)' ) ' coefficients mod QS.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Here, QS = ', qs call binomial_table ( qs, m, n, coef ) write ( *, '(a)' ) ' ' write ( *, '(a,8i8)' ) ' I/J', ( j, j = 0, n ) write ( *, '(a)' ) ' ' do i = 0, m write ( *, '(2x,i2,2x,8i8)' ) i, coef(i,0:n) end do return end subroutine test006 ( ) !*****************************************************************************80 ! !! TEST006 tests I4_LOG_I4. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 09 June 2007 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ) i4 integer ( kind = 4 ) i4_log_i4 integer ( kind = 4 ) j4 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST006' write ( *, '(a)' ) ' I4_LOG_I4: logarith of I4 base J4,' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' I4 J4 I4_LOG_I4' write ( *, '(a)' ) ' ' do j4 = 2, 5 do i4 = 0, 10 write ( *, '(2x, i8, 2x, i8, 2x, i8 )' ) i4, j4, i4_log_i4 ( i4, j4 ) end do write ( *, '(a)' ) ' ' end do return end subroutine test01 ( ) !*****************************************************************************80 ! !! TEST01 tests FAURE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 January 2007 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: dim_max = 4 integer ( kind = 4 ) dim_num integer ( kind = 4 ) i integer ( kind = 4 ) qs integer ( kind = 4 ) prime_ge real ( kind = 8 ) r(dim_max) integer ( kind = 4 ) seed integer ( kind = 4 ) seed_in integer ( kind = 4 ) seed_out write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) ' FAURE computes the next element of a Faure sequence.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' In this test, we call FAURE repeatedly.' do dim_num = 2, dim_max seed = -1 qs = prime_ge ( dim_num ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Using dimension DIM_NUM = ', dim_num write ( *, '(a,i8)' ) ' The prime base QS = ', qs write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Seed Seed Faure' write ( *, '(a)' ) ' In Out' write ( *, '(a)' ) ' ' do i = 1, 10 seed_in = seed call faure ( dim_num, seed, r ) seed_out = seed write ( *, '(2i8,4f10.6)' ) seed_in, seed_out, r(1:dim_num) end do end do return end subroutine test02 ( ) !*****************************************************************************80 ! !! TEST02 tests FAURE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 31 January 2007 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: dim_num = 3 integer ( kind = 4 ) i integer ( kind = 4 ) qs integer ( kind = 4 ) prime_ge real ( kind = 8 ) r(dim_num) integer ( kind = 4 ) seed integer ( kind = 4 ) seed_in integer ( kind = 4 ) seed_out write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST02' write ( *, '(a)' ) ' FAURE computes the next element of a Faure sequence.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' In this test, we demonstrate how the SEED can be' write ( *, '(a)' ) ' manipulated to skip ahead in the sequence, or' write ( *, '(a)' ) ' to come back to any part of the sequence.' qs = prime_ge ( dim_num ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Using dimension DIM_NUM = ', dim_num write ( *, '(a,i8)' ) ' The prime base QS = ', qs write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Note that on the first call to FAURE, if' write ( *, '(a)' ) ' SEED is negative, it is reset to a value that' write ( *, '(a)' ) ' is the recommended starting point:' seed = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Seed Seed Faure' write ( *, '(a)' ) ' In Out' write ( *, '(a)' ) ' ' do i = 1, 5 seed_in = seed call faure ( dim_num, seed, r ) seed_out = seed write ( *, '(2i8,4f10.6)' ) seed_in, seed_out, r(1:dim_num) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' However, if the input value of SEED is 0,' write ( *, '(a)' ) ' then no initial skipping is done.' seed = 0 write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Seed Seed Faure' write ( *, '(a)' ) ' In Out' write ( *, '(a)' ) ' ' do i = 1, 10 seed_in = seed call faure ( dim_num, seed, r ) seed_out = seed write ( *, '(2i8,4f10.6)' ) seed_in, seed_out, r(1:dim_num) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Jump ahead by increasing SEED:' write ( *, '(a)' ) ' ' seed = 100 write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Seed Seed Faure' write ( *, '(a)' ) ' In Out' write ( *, '(a)' ) ' ' do i = 1, 5 seed_in = seed call faure ( dim_num, seed, r ) seed_out = seed write ( *, '(2i8,4f10.6)' ) seed_in, seed_out, r(1:dim_num) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Jump back by decreasing SEED:' write ( *, '(a)' ) ' ' seed = 3 write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Seed Seed Faure' write ( *, '(a)' ) ' In Out' write ( *, '(a)' ) ' ' do i = 1, 10 seed_in = seed call faure ( dim_num, seed, r ) seed_out = seed write ( *, '(2i8,4f10.6)' ) seed_in, seed_out, r(1:dim_num) end do return end subroutine test03 ( ) !*****************************************************************************80 ! !! TEST03 tests FAURE. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 June 2007 ! ! Author: ! ! John Burkardt ! implicit none integer ( kind = 4 ), parameter :: dim_base = 10 integer ( kind = 4 ) dim_num integer ( kind = 4 ) i integer ( kind = 4 ) qs integer ( kind = 4 ) prime_ge real ( kind = 8 ), allocatable, dimension ( : ) :: r integer ( kind = 4 ) seed integer ( kind = 4 ) seed_in integer ( kind = 4 ) seed_out write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST03' write ( *, '(a)' ) ' FAURE computes the next element of a Faure sequence.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' In this test, we try some large dimensions.' do dim_num = dim_base, 6 * dim_base, dim_base allocate ( r(1:dim_num) ) seed = -1 qs = prime_ge ( dim_num ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Using dimension DIM_NUM = ', dim_num write ( *, '(a,i8)' ) ' The prime base QS = ', qs do i = 1, 2 seed_in = seed call faure ( dim_num, seed, r ) seed_out = seed write ( *, '(a)' ) ' ' write ( *, '(a,i10)' ) ' Seed in = ', seed_in write ( *, '(a,i10)' ) ' Seed out = ', seed_out write ( *, '(a,i2,a)' ) ' R(1:', dim_num,') = ' write ( *, '(5(2x,f10.6))' ) r(1:dim_num) end do deallocate ( r ) end do return end