subroutine cycle_floyd ( f, x0, lam, mu ) !*****************************************************************************80 ! !! CYCLE_FLOYD finds a cycle in an iterated mapping using Floyd's method. ! ! Discussion: ! ! Suppose we a repeatedly apply a function f(), starting with the argument ! x0, then f(x0), f(f(x0)) and so on. Suppose that the range of f is finite. ! Then eventually the iteration must reach a cycle. Once the cycle is ! reached, succeeding values stay within that cycle. ! ! Starting at x0, there is a "nearest element" of the cycle, which is ! reached after MU applications of f. ! ! Once the cycle is entered, the cycle has a length LAM, which is the number ! of steps required to first return to a given value. ! ! This function uses Floyd's method to determine the values of MU and LAM, ! given F and X0. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 June 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Donald Knuth, ! The Art of Computer Programming, ! Volume 2, Seminumerical Algorithms, ! Third Edition, ! Addison Wesley, 1997, ! ISBN: 0201896842, ! LC: QA76.6.K64. ! ! Parameters: ! ! Input, external integer ( kind = 4 ) F(), the name of the function ! to be analyzed. ! ! Input, integer ( kind = 4 ) X0, the starting point. ! ! Output, integer ( kind = 4 ) LAM, the length of the cycle. ! ! Output, integer ( kind = 4 ) MU, the index in the sequence starting ! at X0, of the first appearance of an element of the cycle. ! implicit none external f integer ( kind = 4 ) f integer ( kind = 4 ) hare integer ( kind = 4 ) lam integer ( kind = 4 ) mu integer ( kind = 4 ) tortoise integer ( kind = 4 ) x0 tortoise = f ( x0 ) hare = f ( tortoise ) do while ( tortoise /= hare ) tortoise = f ( tortoise ) hare = f ( f ( hare ) ) end do mu = 0 tortoise = x0 do while ( tortoise /= hare ) tortoise = f ( tortoise ) hare = f ( hare ) mu = mu + 1 end do lam = 1 hare = f ( tortoise ) do while ( tortoise /= hare ) hare = f ( hare ) lam = lam + 1 end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end