program main !*****************************************************************************80 ! !! MAIN is the main program for CIRCLE_MONTE_CARLO_TEST. ! ! Discussion: ! ! CIRCLE_MONTE_CARLO_TEST tests the CIRCLE_MONTE_CARLO library. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 June 2017 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CIRCLE_MONTE_CARLO_TEST' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test the CIRCLE_MONTE_CARLO library.' call circle01_sample_random_test ( ) call circle01_sample_ergodic_test ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CIRCLE_MONTE_CARLO_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine circle01_sample_random_test ( ) !*****************************************************************************80 ! !! CIRCLE01_SAMPLE_RANDOM uses CIRCLE01_SAMPLE_RANDOM with an increasing number of points. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 June 2017 ! ! Author: ! ! John Burkardt ! implicit none real ( kind = 8 ) circle01_length integer ( kind = 4 ) e(2) integer ( kind = 4 ) :: e_test(2,7) = reshape ( (/ & 0, 0, & 2, 0, & 0, 2, & 4, 0, & 2, 2, & 0, 4, & 6, 0 /), (/ 2, 7 /) ) real ( kind = 8 ) error real ( kind = 8 ) exact integer ( kind = 4 ) j integer ( kind = 4 ) n real ( kind = 8 ) result(7) integer ( kind = 4 ) seed real ( kind = 8 ), allocatable :: value(:) real ( kind = 8 ), allocatable :: x(:,:) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CIRCLE01_SAMPLE_RANDOM_TEST' write ( *, '(a)' ) ' CIRCLE01_SAMPLE_RANDOM randomly samples the unit circle' write ( *, '(a)' ) ' Use it to estimate integrals.' seed = 123456789 write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' N 1 X^2 Y^2' // & ' X^4 X^2Y^2 Y^4 X^6' write ( *, '(a)' ) ' ' n = 1 do while ( n <= 65536 ) allocate ( value(1:n) ) allocate ( x(1:2,1:n) ) call circle01_sample_random ( n, seed, x ) do j = 1, 7 e(1:2) = e_test(1:2,j) call monomial_value ( 2, n, e, x, value ) result(j) = circle01_length ( ) * sum ( value(1:n) ) & / real ( n, kind = 8 ) end do write ( *, '(2x,i8,7(2x,g14.6))' ) n, result(1:7) deallocate ( value ) deallocate ( x ) n = 2 * n end do write ( *, '(a)' ) ' ' do j = 1, 7 e(1:2) = e_test(1:2,j) call circle01_monomial_integral ( e, result(j) ) end do write ( *, '(2x,a8,7(2x,g14.6))' ) ' Exact', result(1:7) return end subroutine circle01_sample_ergodic_test ( ) !*****************************************************************************80 ! !! CIRCLE01_SAMPLE_ERGODIC uses CIRCLE01_SAMPLE_ERGODIC with an increasing number of points. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 June 2017 ! ! Author: ! ! John Burkardt ! implicit none real ( kind = 8 ) angle real ( kind = 8 ) circle01_length integer ( kind = 4 ) e(2) integer ( kind = 4 ) :: e_test(2,7) = reshape ( (/ & 0, 0, & 2, 0, & 0, 2, & 4, 0, & 2, 2, & 0, 4, & 6, 0 /), (/ 2, 7 /) ) real ( kind = 8 ) error real ( kind = 8 ) exact integer ( kind = 4 ) j integer ( kind = 4 ) n real ( kind = 8 ) result(7) real ( kind = 8 ), allocatable :: value(:) real ( kind = 8 ), allocatable :: x(:,:) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CIRCLE01_SAMPLE_ERGODIC_TEST' write ( *, '(a)' ) ' CIRCLE01_SAMPLE_ERGODIC ergodically samples the unit circle' write ( *, '(a)' ) ' Use it to estimate integrals.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' N 1 X^2 Y^2' // & ' X^4 X^2Y^2 Y^4 X^6' write ( *, '(a)' ) ' ' n = 1 do while ( n <= 65536 ) allocate ( value(1:n) ) allocate ( x(1:2,1:n) ) angle = 0.0D+00 call circle01_sample_ergodic ( n, angle, x ) do j = 1, 7 e(1:2) = e_test(1:2,j) call monomial_value ( 2, n, e, x, value ) result(j) = circle01_length ( ) * sum ( value(1:n) ) & / real ( n, kind = 8 ) end do write ( *, '(2x,i8,7(2x,g14.6))' ) n, result(1:7) deallocate ( value ) deallocate ( x ) n = 2 * n end do write ( *, '(a)' ) ' ' do j = 1, 7 e(1:2) = e_test(1:2,j) call circle01_monomial_integral ( e, result(j) ) end do write ( *, '(2x,a8,7(2x,g14.6))' ) ' Exact', result(1:7) return end