13 August 2014 9:39:04.215 AM BVLS_PRB FORTRAN90 version Test the BVLS library. TEST01 M = 2, N = 2, UNBND = 0.10000E+07 Bounds: 1.00000 3.00000 2.00000 4.00000 Matrix A: 0.829509 0.415307 0.561695 0.661187E-01 RHS B: 0.218418 0.956318 BVLS_REPORT: Number of components not at constraints = 0 Solution vector, X: 1.00000 3.00000 Variable index INDEX: 1 2 Residual R = B - A*X: -1.85701 0.196266 Residual norm = 1.8674 Residual norm from BVLS = 1.8674 Dual vector: W = (A')*R: -1.43017 -0.758253 Dual vector from BVLS: W -1.43017 -0.758253 TEST02 M = 2, N = 4, UNBND = 0.10000E+07 Bounds: 0.00000 0.00000 0.00000 0.00000 10.0000 10.0000 10.0000 10.0000 Matrix A: 0.829509 0.415307 0.257578 0.438290E-01 0.561695 0.661187E-01 0.109957 0.633966 RHS B: 0.218418 0.956318 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 0.192624 0.00000 0.00000 1.33780 Variable index INDEX: 1 4 3 2 Residual R = B - A*X: 0.277556E-16 0.00000 Residual norm = 0.27756E-16 Residual norm from BVLS = 0.0000 Dual vector: W = (A')*R: 0.230235E-16 0.115271E-16 0.714922E-17 0.121650E-17 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.00000 TEST03 M = 4, N = 2, UNBND = 0.10000E+07 Bounds: 0.00000 -100.000 100.000 100.000 Matrix A: 0.415307 0.438290E-01 0.661187E-01 0.633966 0.257578 0.617272E-01 0.109957 0.449539 RHS B: 0.218418 0.956318 0.829509 0.561695 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 1.04661 1.29280 Variable index INDEX: 1 2 Residual R = B - A*X: -0.272906 0.675268E-01 0.480126 -0.134550 Residual norm = 0.57242 Residual norm from BVLS = 0.57242 Dual vector: W = (A')*R: 0.485723E-16 0.319189E-15 Dual vector from BVLS: W 0.00000 0.00000 TEST04 M = 5, N = 10, UNBND = 0.10000E+07 Bounds: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 0.00000 -0.399400 1.00000 -0.200000 22.0000 -4.00000 45.0000 100.000 -0.179769+309 -1.00000 -3.00000 46.0000 101.000 0.179769+309 1.00000 Matrix A: 0.661187E-01 0.617272E-01 0.183837E-02 0.859097 0.912484 0.257578 0.449539 0.897504 0.840847 0.113664 0.109957 0.401306 0.350752 0.123104 0.351629 0.438290E-01 0.754673 0.945448E-01 0.751236E-02 0.822887 0.633966 0.797287 0.136169E-01 0.260303 0.267132 0.692066 0.597917 0.574366 0.714471 0.618618E-01 0.561662 0.188955 0.367027 0.117707 0.710781 0.861216 0.761492 0.617205 0.299329 0.882833E-01 0.453794 0.396988 0.361529 0.825003 0.777994 0.911977 0.185314 0.212930 0.824660 0.745303 RHS B: 0.218418 0.956318 0.829509 0.561695 0.415307 BVLS_REPORT: Number of components not at constraints = 1 Solution vector, X: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 -4.00000 45.0000 100.000 -95.9668 1.00000 Variable index INDEX: 9 6 10 3 5 4 7 8 2 1 Residual R = B - A*X: -31.7305 -32.4751 -69.9121 9.87199 47.6261 Residual norm = 96.514 Residual norm from BVLS = 96.514 Dual vector: W = (A')*R: 12.4758 0.808168 -52.1449 -50.7012 -36.3819 -52.4953 -65.6012 -59.5842 -0.497380E-13 11.9586 Dual vector from BVLS: W 0.00000 0.00000 -52.1449 -50.7012 -36.3819 -52.4953 -65.6012 -59.5842 0.00000 11.9586 TEST05 M = 10, N = 5, UNBND = 0.10000E+07 Bounds: 0.00000 -1.00000 0.00000 0.300000 0.480000E-01 1.00000 0.00000 1.00000 0.400000 0.490000E-01 Matrix A: 0.617272E-01 0.859097 0.692066 0.574366 0.618618E-01 0.449539 0.840847 0.561662 0.367027 0.710781 0.401306 0.123104 0.861216 0.617205 0.882833E-01 0.754673 0.751236E-02 0.453794 0.361529 0.777994 0.797287 0.260303 0.911977 0.212930 0.745303 0.183837E-02 0.912484 0.597917 0.714471 0.308675 0.897504 0.113664 0.188955 0.117707 0.899373 0.350752 0.351629 0.761492 0.299329 0.763537 0.945448E-01 0.822887 0.396988 0.825003 0.761731 0.136169E-01 0.267132 0.185314 0.824660 0.406970 RHS B: 0.218418 0.956318 0.829509 0.561695 0.415307 0.661187E-01 0.257578 0.109957 0.438290E-01 0.633966 BVLS_REPORT: Number of components not at constraints = 3 Solution vector, X: 0.370364 -0.154345 0.197883 0.400000 0.480000E-01 Variable index INDEX: 1 3 2 4 5 Residual R = B - A*X: -0.415098E-01 0.627534 0.278341 0.115977E-01 -0.141214 -0.212647 -0.184926 -0.272745 -0.309300 0.284084 Residual norm = 0.90733 Residual norm from BVLS = 0.90733 Dual vector: W = (A')*R: -0.130972E-15 -0.305311E-15 -0.548173E-15 0.761586E-01 -0.188377 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.761586E-01 -0.188377 TEST06 M = 6, N = 4, UNBND = 999.00 Bounds: -100.000 -0.179769+309 -0.179769+309 -0.179769+309 100.000 0.179769+309 0.179769+309 0.179769+309 Matrix A: 0.257578 0.401306 0.945448E-01 0.260303 0.109957 0.754673 0.136169E-01 0.912484 0.438290E-01 0.797287 0.859097 0.113664 0.633966 0.183837E-02 0.840847 0.351629 0.617272E-01 0.897504 0.123104 0.822887 0.449539 0.350752 0.751236E-02 0.267132 RHS B: 0.218418 0.956318 0.829509 0.561695 0.415307 0.661187E-01 BVLS_REPORT: Number of components not at constraints = 4 Solution vector, X: -0.371430 0.111047 0.704941 0.685629 Variable index INDEX: 1 2 3 4 Residual R = B - A*X: 0.244067E-01 0.278130 0.737083E-01 -0.368694E-01 -0.312407 0.569144E-02 Residual norm = 0.42705 Residual norm from BVLS = 0.42705 Dual vector: W = (A')*R: -0.201662E-15 -0.746798E-15 -0.306606E-15 -0.597612E-15 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.00000 BVLS_PRB: Normal end of execution. 13 August 2014 9:39:04.242 AM