subroutine blend_101 ( r, x0, x1, x ) !*****************************************************************************80 ! !! BLEND_101 extends scalar endpoint data to a line. ! ! Diagram: ! ! 0-----r-----1 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, the coordinate where an interpolated ! value is desired. ! ! Input, real ( kind = 8 ) X0, X1, the data values at the ends of the line. ! ! Output, real ( kind = 8 ) X, the interpolated data value at (R). ! implicit none real ( kind = 8 ) r real ( kind = 8 ) x real ( kind = 8 ) x0 real ( kind = 8 ) x1 x = ( 1.0D+00 - r ) * x0 + r * x1 return end subroutine blend_102 ( r, s, x00, x01, x10, x11, x ) !*****************************************************************************80 ! !! BLEND_102 extends scalar point data into a square. ! ! Diagram: ! ! 01------------11 ! | . | ! | . | ! |.....rs......| ! | . | ! | . | ! 00------------10 ! ! Formula: ! ! Written in terms of R and S, the map has the form: ! ! X(R,S) = ! 1 * ( + x00 ) ! + r * ( - x00 + x10 ) ! + s * ( - x00 + x01 ) ! + r * s * ( + x00 - x10 - x01 + x11 ) ! ! Written in terms of the coefficients, the map has the form: ! ! X(R,S) = x00 * ( 1 - r - s + r * s ) ! + x01 * ( s - r * s ) ! + x10 * ( r - r * s ) ! + x11 * ( r * s ) ! ! = x00 * ( 1 - r ) * ( 1 - s ) ! + x01 * ( 1 - r ) * s ! + x10 * r * ( 1 - s ) ! + x11 * r s ! ! The nonlinear term ( r * s ) has an important role: ! ! If ( x01 + x10 - x00 - x11 ) is zero, then the input data lies in ! a plane, and the mapping is affine. All the interpolated data ! will lie on the plane defined by the four corner values. In ! particular, on any line through the square, data values at ! intermediate points will lie between the values at the endpoints. ! ! If ( x01 + x10 - x00 - x11 ) is not zero, then the input data does ! not lie in a plane, and the interpolation map is nonlinear. On ! any line through the square, data values at intermediate points ! may lie above or below the data values at the endpoints. The ! size of the coefficient of r * s will determine how severe this ! effect is. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 October 2001 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, the coordinates where an ! interpolated value is desired. ! ! Input, real ( kind = 8 ) X00, X01, X10, X11, the data values ! at the corners. ! ! Output, real ( kind = 8 ) X, the interpolated data value at (R,S). ! implicit none real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) x real ( kind = 8 ) x00 real ( kind = 8 ) x01 real ( kind = 8 ) x10 real ( kind = 8 ) x11 x = + x00 & + r * ( - x00 + x10 ) & + s * ( - x00 + x01 ) & + r * s * ( + x00 - x10 - x01 + x11 ) return end subroutine blend_103 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, & x111, x ) !*****************************************************************************80 ! !! BLEND_103 extends scalar point data into a cube. ! ! Diagram: ! ! 011--------------111 ! | | ! | | ! | | ! | | ! | | ! 001--------------101 ! ! ! *---------------* ! | | ! | | ! | rst | ! | | ! | | ! *---------------* ! ! ! 010--------------110 ! | | ! | | ! | | ! | | ! | | ! 000--------------100 ! ! ! Formula: ! ! Written as a polynomial in R, S and T, the interpolation map has the ! form: ! ! X(R,S,T) = ! 1 * ( + x000 ) ! + r * ( - x000 + x100 ) ! + s * ( - x000 + x010 ) ! + t * ( - x000 + x001 ) ! + r * s * ( + x000 - x100 - x010 + x110 ) ! + r * t * ( + x000 - x100 - x001 + x101 ) ! + s * t * ( + x000 - x010 - x001 + x011 ) ! + r * s * t * ( - x000 + x100 + x010 + x001 - x011 - x101 - x110 + x111 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 October 2001 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, T, the coordinates where an ! interpolated value is desired. ! ! Input, real ( kind = 8 ) X000, X001, X010, X011, X100, X101, X110, ! X111, the data values at the corners. ! ! Output, real ( kind = 8 ) X, the interpolated data value at (R,S,T). ! implicit none real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x real ( kind = 8 ) x000 real ( kind = 8 ) x001 real ( kind = 8 ) x010 real ( kind = 8 ) x011 real ( kind = 8 ) x100 real ( kind = 8 ) x101 real ( kind = 8 ) x110 real ( kind = 8 ) x111 ! ! Interpolate the interior point. ! x = & 1.0D+00 * ( + x000 ) & + r * ( - x000 + x100 ) & + s * ( - x000 + x010 ) & + t * ( - x000 + x001 ) & + r * s * ( + x000 - x100 - x010 + x110 ) & + r * t * ( + x000 - x100 - x001 + x101 ) & + s * t * ( + x000 - x010 - x001 + x011 ) & + r * s * t * ( - x000 + x100 + x010 + x001 - x011 - x101 - x110 + x111 ) return end subroutine blend_112 ( r, s, x00, x01, x10, x11, xr0, xr1, x0s, x1s, x ) !*****************************************************************************80 ! !! BLEND_112 extends scalar line data into a square. ! ! Diagram: ! ! 01-----r1-----11 ! | . | ! | . | ! 0s.....rs.....1s ! | . | ! | . | ! 00-----r0-----10 ! ! Formula: ! ! Written in terms of R and S, the interpolation map has the form: ! ! X(R,S) = ! 1 * ( - x00 + x0s + xr0 ) ! + r * ( x00 - x0s - x10 + x1s ) ! + s * ( x00 - x01 - xr0 + xr1 ) ! + r * s * ( - x00 + x01 + x10 - x11 ) ! ! Written in terms of the data, the map has the form: ! ! X(R,S) = ! - ( 1 - r ) * ( 1 - s ) * x00 ! + ( 1 - r ) * x0s ! - ( 1 - r ) * s * x01 ! + ( 1 - s ) * xr0 ! + s * xr1 ! - r * ( 1 - s ) * x10 ! + r * x1s ! - r * s * x11 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, the coordinates where an interpolated ! value is desired. ! ! Input, real ( kind = 8 ) X00, X01, X10, X11, the data values ! at the corners. ! ! Input, real ( kind = 8 ) XR0, XR1, X0S, X1S, the data values at ! points along the edges corresponding to (R,0), (R,1), (0,S) and (1,S). ! ! Output, real ( kind = 8 ) X, the interpolated data value at (R,S). ! implicit none real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) x real ( kind = 8 ) x00 real ( kind = 8 ) x01 real ( kind = 8 ) x10 real ( kind = 8 ) x11 real ( kind = 8 ) xr0 real ( kind = 8 ) xr1 real ( kind = 8 ) x0s real ( kind = 8 ) x1s x = - ( 1.0D+00 - r ) * ( 1.0D+00 - s ) * x00 & + ( 1.0D+00 - r ) * x0s & - ( 1.0D+00 - r ) * s * x01 & + ( 1.0D+00 - s ) * xr0 & + s * xr1 & - r * ( 1.0D+00 - s ) * x10 & + r * x1s & - r * s * x11 return end subroutine blend_113 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, & x111, xr00, xr01, xr10, xr11, x0s0, x0s1, x1s0, x1s1, x00t, x01t, x10t, & x11t, x ) !*****************************************************************************80 ! !! BLEND_113 extends scalar line data into a cube. ! ! Diagram: ! ! 011-----r11-----111 ! | | ! | | ! 0s1 1s1 ! | | ! | | ! 001-----r01-----101 ! ! ! 01t-------------11t ! | | ! | | ! | rst | ! | | ! | | ! 00t-------------10t ! ! ! 010-----r10-----110 ! | | ! | | ! 0s0 1s0 ! | | ! | | ! 000-----r00-----100 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 October 2001 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, T, the coordinates where an interpolated ! value is desired. ! ! Input, real ( kind = 8 ) X000, X001, X010, X011, X100, X101, X110, ! X111, the data values at the corners. ! ! Input, real ( kind = 8 ) XR00, XR01, XR10, XR11, X0S0, X0S1, X1S0, ! X1S1, X00T, X01T, X10T, X11T, the data values at points along the edges. ! ! Output, real ( kind = 8 ) X, the interpolated data value at (R,S,T). ! implicit none real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x real ( kind = 8 ) x000 real ( kind = 8 ) x001 real ( kind = 8 ) x010 real ( kind = 8 ) x011 real ( kind = 8 ) x100 real ( kind = 8 ) x101 real ( kind = 8 ) x110 real ( kind = 8 ) x111 real ( kind = 8 ) xr00 real ( kind = 8 ) xr01 real ( kind = 8 ) xr0t real ( kind = 8 ) xr10 real ( kind = 8 ) xr11 real ( kind = 8 ) xr1t real ( kind = 8 ) xrs0 real ( kind = 8 ) xrs1 real ( kind = 8 ) x0s0 real ( kind = 8 ) x0s1 real ( kind = 8 ) x0st real ( kind = 8 ) x1s0 real ( kind = 8 ) x1s1 real ( kind = 8 ) x1st real ( kind = 8 ) x00t real ( kind = 8 ) x01t real ( kind = 8 ) x10t real ( kind = 8 ) x11t ! ! Interpolate the points in the centers of the faces. ! call blend_112 ( s, t, x000, x001, x010, x011, x0s0, x0s1, x00t, x01t, x0st ) call blend_112 ( s, t, x100, x101, x110, x111, x1s0, x1s1, x10t, x11t, x1st ) call blend_112 ( r, t, x000, x001, x100, x101, xr00, xr01, x00t, x10t, xr0t ) call blend_112 ( r, t, x010, x011, x110, x111, xr10, xr11, x01t, x11t, xr1t ) call blend_112 ( r, s, x000, x010, x100, x110, xr00, xr10, x0s0, x1s0, xrs0 ) call blend_112 ( r, s, x001, x011, x101, x111, xr01, xr11, x0s1, x1s1, xrs1 ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_123 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, x111, & xr00, xr01, xr10, xr11, x0s0, x0s1, x1s0, x1s1, x00t, x01t, x10t, x11t, & x0st, x1st, xr0t, xr1t, xrs0, xrs1, x ) return end subroutine blend_123 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, & x111, xr00, xr01, xr10, xr11, x0s0, x0s1, x1s0, x1s1, x00t, x01t, x10t, & x11t, x0st, x1st, xr0t, xr1t, xrs0, xrs1, x ) ! !*****************************************************************************80 ! !! BLEND_123 extends scalar face data into a cube. ! ! Diagram: ! ! 010-----r10-----110 011-----r11-----111 ! | . | | . | ! | . | | . | ! 0s0.....rs0.....1s0 0s1.....rs1.....1s1 S ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 001-----r01-----101 +----R ! BOTTOM TOP ! ! 011-----0s1-----001 111-----1s1-----101 ! | . | | . | ! | . | | . | ! 01t.....0st.....00t 11t.....1st.....10t T ! | . | | . | | ! | . | | . | | ! 010-----0s0-----000 110-----1s0-----100 S----+ ! LEFT RIGHT ! ! 001-----r01-----101 011-----r11-----111 ! | . | | . | ! | . | | . | ! 00t.....r0t.....100 01t.....r1t.....11t T ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 010-----r10-----110 +----R ! FRONT BACK ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, T, the coordinates where an interpolated ! value is desired. ! ! Input, real ( kind = 8 ) X000, X001, X010, X011, X100, X101, X110, ! X111, the data values at the corners. ! ! Input, real ( kind = 8 ) XR00, XR01, XR10, XR11, X0S0, X0S1, X1S0, ! X1S1, X00T, X01T, X10T, X11T, the data values at points along the edges. ! ! Input, real ( kind = 8 ) X0ST, X1ST, XR0T, XR1T, XRS0, XRS1, the ! data values at points on the faces. ! ! Output, real ( kind = 8 ) X, the interpolated data value at (R,S,T). ! implicit none real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x real ( kind = 8 ) x000 real ( kind = 8 ) x001 real ( kind = 8 ) x010 real ( kind = 8 ) x011 real ( kind = 8 ) x100 real ( kind = 8 ) x101 real ( kind = 8 ) x110 real ( kind = 8 ) x111 real ( kind = 8 ) xr00 real ( kind = 8 ) xr01 real ( kind = 8 ) xr10 real ( kind = 8 ) xr11 real ( kind = 8 ) x0s0 real ( kind = 8 ) x0s1 real ( kind = 8 ) x1s0 real ( kind = 8 ) x1s1 real ( kind = 8 ) x00t real ( kind = 8 ) x01t real ( kind = 8 ) x10t real ( kind = 8 ) x11t real ( kind = 8 ) x0st real ( kind = 8 ) x1st real ( kind = 8 ) xr0t real ( kind = 8 ) xr1t real ( kind = 8 ) xrs0 real ( kind = 8 ) xrs1 ! ! Interpolate the interior point. ! x = ( 1.0D+00 - r ) * ( 1.0D+00 - s ) * ( 1.0D+00 - t ) * x000 & - ( 1.0D+00 - r ) * ( 1.0D+00 - s ) * x00t & + ( 1.0D+00 - r ) * ( 1.0D+00 - s ) * t * x001 & - ( 1.0D+00 - r ) * ( 1.0D+00 - t ) * x0s0 & + ( 1.0D+00 - r ) * x0st & - ( 1.0D+00 - r ) * t * x0s1 & + ( 1.0D+00 - r ) * s * ( 1.0D+00 - t ) * x010 & - ( 1.0D+00 - r ) * s * x01t & + ( 1.0D+00 - r ) * s * t * x011 & - ( 1.0D+00 - s ) * ( 1.0D+00 - t ) * xr00 & + ( 1.0D+00 - s ) * xr0t & - ( 1.0D+00 - s ) * t * xr01 & + ( 1.0D+00 - t ) * xrs0 & + t * xrs1 & - s * ( 1.0D+00 - t ) * xr10 & + s * xr1t & - s * t * xr11 & + r * ( 1.0D+00 - s ) * ( 1.0D+00 - t ) * x100 & - r * ( 1.0D+00 - s ) * x10t & + r * ( 1.0D+00 - s ) * t * x101 & - r * ( 1.0D+00 - t ) * x1s0 & + r * x1st & - r * t * x1s1 & + r * s * ( 1.0D+00 - t ) * x110 & - r * s * x11t & + r * s * t * x111 return end subroutine blend_i_0d1 ( x, m ) !*****************************************************************************80 ! !! BLEND_I_0D1 extends indexed scalar data at endpoints along a line. ! ! Diagram: ! ! ( X1, ..., ..., ..., ..., ..., XM ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M). ! On input, X(1) and X(M) contain scalar values which are to be ! interpolated through the entries X(2) through X(M). It is assumed ! that the dependence of the data is linear in the vector index I. ! On output, X(2) through X(M-1) have been assigned interpolated ! values. ! ! Input, integer ( kind = 4 ) M, the number of entries in X. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) x(m) do i = 2, m - 1 r = real ( i - 1, kind = 8 ) & / real ( m - 1, kind = 8 ) call blend_101 ( r, x(1), x(m), x(i) ) end do return end subroutine blend_ij_0d1 ( x, m1, m2 ) !*****************************************************************************80 ! !! BLEND_IJ_0D1 extends indexed scalar data at corners into a table. ! ! Diagram: ! ! ( X11, ..., ..., ..., ..., ..., X1M2 ) ! ( ..., ..., ..., ..., ..., ..., ... ) ! ( ..., ..., ..., ..., ..., ..., ... ) ! ( ..., ..., ..., ..., ..., ..., ... ) ! ( XM11, ..., ..., ..., ..., ..., XM1M2 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M1,M2). ! On input, X(1,1), X(1,M2), X(M1,1) and X(M1,M2) contain scalar ! values which are to be interpolated throughout the table, using ! the table indices I and J as independent variables. ! On output, all entries in X have been assigned a value. ! ! Input, integer ( kind = 4 ) M1, M2, the number of rows and columns in X. ! implicit none integer ( kind = 4 ) m1 integer ( kind = 4 ) m2 integer ( kind = 4 ) i integer ( kind = 4 ) j real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) x(m1,m2) ! ! Interpolate values along the edges. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) call blend_101 ( r, x(1,1), x(m1,1), x(i,1) ) call blend_101 ( r, x(1,m2), x(m1,m2), x(i,m2) ) end do do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) call blend_101 ( s, x(1,1), x(1,m2), x(1,j) ) call blend_101 ( s, x(m1,1), x(m1,m2), x(m1,j) ) end do ! ! Interpolate values in the interior. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) call blend_112 ( r, s, x(1,1), x(1,m2), x(m1,1), x(m1,m2), & x(i,1), x(i,m2), x(1,j), x(m1,j), x(i,j) ) end do end do return end subroutine blend_ij_1d1 ( x, m1, m2 ) !*****************************************************************************80 ! !! BLEND_IJ_1D1 extends indexed scalar data along edges into a table. ! ! Diagram: ! ! ( X11, X12, X13, X14, X15, X16, X1M2 ) ! ( X21, ..., ..., ..., ..., ..., X2M2 ) ! ( X31, ..., ..., ..., ..., ..., X3M2 ) ! ( X41, ..., ..., ..., ..., ..., X4M2 ) ! ( XM11, XM12, XM13, XM14, XM15, XM16, XM1M2 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 19 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M1,M2). ! On input, data is contained in the "edge entries" X(1,J), X(I,1), ! X(M1,J) and X(I,M2), for I = 1 to M1, and J = 1 to M2. ! On output, all entries in X have been assigned a value. ! ! Input, integer ( kind = 4 ) M1, M2, the number of rows and columns in X. ! implicit none integer ( kind = 4 ) m1 integer ( kind = 4 ) m2 integer ( kind = 4 ) i integer ( kind = 4 ) j real ( kind = 8 ) x(m1,m2) real ( kind = 8 ) r real ( kind = 8 ) s ! ! Interpolate values in the interior. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) call blend_112 ( r, s, x(1,1), x(1,m2), x(m1,1), x(m1,m2), & x(i,1), x(i,m2), x(1,j), x(m1,j), x(i,j) ) end do end do return end subroutine blend_ij_w_1d1 ( x, r, s, m1, m2 ) !*****************************************************************************80 ! !! BLEND_IJ_W_1D1 extends weighted indexed scalar data along edges into a table. ! ! Diagram: ! ! Instead of assuming that the data in the table is equally spaced, ! the arrays R and S are supplied, which should behave as ! "coordinates" for the data. ! ! S(1) S(2) S(3) S(4) S(5) S(6) S(M2) ! ! R(1) ( X11, X12, X13, X14, X15, X16, X1M2 ) ! R(2) ( X21, ..., ..., ..., ..., ..., X2M2 ) ! R(3) ( X31, ..., ..., ..., ..., ..., X3M2 ) ! R(4) ( X41, ..., ..., ..., ..., ..., X4M2 ) ! R(M1) ( XM11, XM12, XM13, XM14, XM15, XM16, XM1M2 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 August 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M1,M2). ! On input, data is contained in the "edge entries" X(1,J), X(I,1), ! X(M1,J) and X(I,M2), for I = 1 to M1, and J = 1 to M2. ! On output, all entries in X have been assigned a value. ! ! Input, real ( kind = 8 ) R(M1), S(M2), are "coordinates" for the rows and ! columns of the array. The values in R, and the values in S, should ! be strictly increasing or decreasing. ! ! Input, integer ( kind = 4 ) M1, M2, the number of rows and columns in X. ! implicit none integer ( kind = 4 ) m1 integer ( kind = 4 ) m2 integer ( kind = 4 ) i integer ( kind = 4 ) j real ( kind = 8 ) x(m1,m2) real ( kind = 8 ) r(m1) real ( kind = 8 ) rr real ( kind = 8 ) s(m2) real ( kind = 8 ) ss ! ! Interpolate values in the interior. ! do i = 2, m1 - 1 rr = ( r(i) - r(1) ) / ( r(m1) - r(1) ) do j = 2, m2 - 1 ss = ( s(j) - s(1) ) / ( s(m2) - s(1) ) call blend_112 ( rr, ss, x(1,1), x(1,m2), x(m1,1), x(m1,m2), & x(i,1), x(i,m2), x(1,j), x(m1,j), x(i,j) ) end do end do return end subroutine blend_ijk_0d1 ( x, m1, m2, m3 ) !*****************************************************************************80 ! !! BLEND_IJK_0D1 extends indexed scalar corner data into a cubic table. ! ! Diagram: ! ! ( X111, ..., ..., ..., ..., ..., X1M21 ) ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( ...., ..., ..., ..., ..., ..., ... ) First "layer" ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( XM111, ..., ..., ..., ..., ..., XM1M21 ) ! ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( ...., ..., ..., ..., ..., ..., ... ) Middle "layers" ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( ...., ..., ..., ..., ..., ..., ... ) ! ! ( X11M3, ..., ..., ..., ..., ..., X1M2M3 ) ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( ...., ..., ..., ..., ..., ..., ... ) Last "layer" ! ( ...., ..., ..., ..., ..., ..., ... ) ! ( XM11M3, ..., ..., ..., ..., ..., XM1M2M3 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M1,M2,M3). ! On input, X(1,1,1), X(1,M2,1), X(M1,1,1), X(M1,M2,1), X(1,1,M3), ! X(1,M2,M3), X(M1,1,M3) and X(M1,M2,M3) contain scalar values ! which are to be interpolated throughout the table, using the table ! indices I and J as independent variables. ! On output, all entries in X have been assigned a value. ! ! Input, integer ( kind = 4 ) M1, M2, M3, the number of rows, columns, ! and layers in X. ! implicit none integer ( kind = 4 ) m1 integer ( kind = 4 ) m2 integer ( kind = 4 ) m3 integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x(m1,m2,m3) ! ! Interpolate values along the "edges", that is, index triplets (i,j,k) ! with exactly two of I, J, K an "extreme" value. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) call blend_101 ( r, x( 1, 1, 1), x(m1, 1, 1), x( i, 1, 1) ) call blend_101 ( r, x( 1,m2, 1), x(m1,m2, 1), x( i,m2, 1) ) call blend_101 ( r, x( 1, 1,m3), x(m1, 1,m3), x( i, 1,m3) ) call blend_101 ( r, x( 1,m2,m3), x(m1,m2,m3), x( i,m2,m3) ) end do do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) call blend_101 ( s, x( 1, 1, 1), x( 1,m2, 1), x( 1, j, 1) ) call blend_101 ( s, x(m1, 1, 1), x(m1,m2, 1), x(m1, j, 1) ) call blend_101 ( s, x( 1, 1,m3), x( 1,m2,m3), x( 1, j,m3) ) call blend_101 ( s, x(m1, 1,m3), x(m1,m2,m3), x(m1, j,m3) ) end do do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_101 ( t, x( 1, 1,1), x( 1, 1,m3), x( 1, 1,k) ) call blend_101 ( t, x(m1, 1,1), x(m1, 1,m3), x(m1, 1,k) ) call blend_101 ( t, x( 1,m2,1), x( 1,m2,m3), x( 1,m2,k) ) call blend_101 ( t, x(m1,m2,1), x(m1,m2,m3), x(m1,m2,k) ) end do ! ! Interpolate values along the "faces", that is, index triplets (i,j,k) ! with exactly one of I, J, K is an "extreme" value. ! do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_112 ( s, t, x(1,1,1), x(1,1,m3), x(1,m2,1), x(1,m2,m3), & x(1,j,1), x(1,j,m3), x(1,1,k), x(1,m2,k), x(1,j,k) ) call blend_112 ( s, t, x(m1,1,1), x(m1,1,m3), x(m1,m2,1), x(m1,m2,m3), & x(m1,j,1), x(m1,j,m3), x(m1,1,k), x(m1,m2,k), x(m1,j,k) ) end do end do do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_112 ( r, t, x(1,1,1), x(1,1,m3), x(m1,1,1), x(m1,1,m3), & x(i,1,1), x(i,1,m3), x(1,1,k), x(m1,1,k), x(i,1,k) ) call blend_112 ( r, t, x(1,m2,1), x(1,m2,m3), x(m1,m2,1), x(m1,m2,m3), & x(i,m2,1), x(i,m2,m3), x(1,m2,k), x(m1,m2,k), x(i,m2,k) ) end do end do do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) call blend_112 ( r, s, x(1,1,1), x(1,m2,1), x(m1,1,1), x(m1,m2,1), & x(i,1,1), x(i,m2,1), x(1,j,1), x(m1,j,1), x(i,j,1) ) call blend_112 ( r, s, x(1,1,m3), x(1,m2,m3), x(m1,1,m3), x(m1,m2,m3), & x(i,1,m3), x(i,m2,m3), x(1,j,m3), x(m1,j,m3), x(i,j,m3) ) end do end do ! ! Interpolate values in the interior. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_123 ( r, s, t, & x( 1,1,1), x( 1, 1,m3), x( 1,m2,1), x( 1,m2,m3), & x(m1,1,1), x(m1, 1,m3), x(m1,m2,1), x(m1,m2,m3), & x( i,1,1), x( i, 1,m3), x( i,m2,1), x( i,m2,m3), & x( 1,j,1), x( 1, j,m3), x(m1, j,1), x(m1, j,m3), & x( 1,1,k), x( 1,m2, k), x(m1, 1,k), x(m1,m2, k), & x( 1,j,k), x(m1, j, k), x( i, 1,k), x( i,m2, k), & x( i,j,1), x( i, j,m3), x( i, j,k) ) end do end do end do return end subroutine blend_ijk_1d1 ( x, m1, m2, m3 ) !*****************************************************************************80 ! !! BLEND_IJK_1D1 extends indexed scalar edge data into a cubic table. ! ! Diagram: ! ! ( X111, X121, X131, X141, X151, X1M21 ) ! ( X211, ..., ..., ..., ..., X2M21 ) ! ( X311, ..., ..., ..., ..., X3M21 ) Layer 1 ! ( X411, ..., ..., ..., ..., X4M21 ) ! ( XM111, XM121, XM131, XM141, XM151, XM1M21 ) ! ! ( X11K, ..., ..., ..., ..., X1M2K ) ! ( ...., ..., ..., ..., ..., ... ) ! ( ...., ..., ..., ..., ..., ... ) Layer K ! ( ...., ..., ..., ..., ..., ... ) 1 < K < M3 ! ( XM11K, ..., ..., ..., ..., XM1M2K ) ! ! ( X11M3, X12M3, X13M3, X14M3, X15M3, X1M2M3 ) ! ( X21M3, ..., ..., ..., ..., X2M2M3 ) ! ( X31M3, ..., ..., ..., ..., X3M2M3 ) Layer M3 ! ( X41M3 ..., ..., ..., ..., X4M2M3 ) ! ( XM11M3, XM12M3, XM13M3, XM14M3, XM15M3, XM1M2M3 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M1,M2,M3). ! On input, there is already scalar data in the entries X(I,J,K) ! corresponding to "edges" of the table, that is, entries for which ! at least two of the three indices I, J and K are equal to their ! minimum or maximum possible values. ! On output, all entries in X have been assigned a value, using the ! table indices as independent variables. ! ! Input, integer ( kind = 4 ) M1, M2, M3, the number of rows, columns, and ! layers in X. ! implicit none integer ( kind = 4 ) m1 integer ( kind = 4 ) m2 integer ( kind = 4 ) m3 integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x(m1,m2,m3) ! ! Interpolate values along the "faces", that is, index triplets (i,j,k) ! where exactly one of I, J, K is an "extreme" value. ! do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_112 ( s, t, x(1,1,1), x(1,1,m3), x(1,m2,1), & x(1,m2,m3), x(1,j,1), x(1,j,m3), x(1,1,k), x(1,m2,k), x(1,j,k) ) call blend_112 ( s, t, x(m1,1,1), x(m1,1,m3), x(m1,m2,1), & x(m1,m2,m3), x(m1,j,1), x(m1,j,m3), x(m1,1,k), x(m1,m2,k), x(m1,j,k) ) end do end do do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_112 ( r, t, x(1,1,1), x(1,1,m3), x(m1,1,1), x(m1,1,m3), & x(i,1,1), x(i,1,m3), x(1,1,k), x(m1,1,k), x(i,1,k) ) call blend_112 ( r, t, x(1,m2,1), x(1,m2,m3), x(m1,m2,1), x(m1,m2,m3), & x(i,m2,1), x(i,m2,m3), x(1,m2,k), x(m1,m2,k), x(i,m2,k) ) end do end do do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) call blend_112 ( r, s, x(1,1,1), x(1,m2,1), x(m1,1,1), x(m1,m2,1), & x(i,1,1), x(i,m2,1), x(1,j,1), x(m1,j,1), x(i,j,1) ) call blend_112 ( r, s, x(1,1,m3), x(1,m2,m3), x(m1,1,m3), x(m1,m2,m3), & x(i,1,m3), x(i,m2,m3), x(1,j,m3), x(m1,j,m3), x(i,j,m3) ) end do end do ! ! Interpolate values in the interior. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_123 ( r, s, t, & x( 1,1,1), x( 1, 1,m3), x( 1,m2,1), x( 1,m2,m3), & x(m1,1,1), x(m1, 1,m3), x(m1,m2,1), x(m1,m2,m3), & x( i,1,1), x( i, 1,m3), x( i,m2,1), x( i,m2,m3), & x( 1,j,1), x( 1, j,m3), x(m1, j,1), x(m1, j,m3), & x( 1,1,k), x( 1,m2, k), x(m1, 1,k), x(m1,m2, k), & x( 1,j,k), x(m1, j, k), x( i, 1,k), x( i,m2, k), & x( i,j,1), x( i, j,m3), x( i, j,k) ) end do end do end do return end subroutine blend_ijk_2d1 ( x, m1, m2, m3 ) !*****************************************************************************80 ! !! BLEND_IJK_2D1 extends indexed scalar face data into a cubic table. ! ! Diagram: ! ! ( X111 X121 X131 X141 X151 X1M21 ) ! ( X211 X221 X231 X241 X251 X2M21 ) ! ( X311 X321 X331 X341 X351 X3M21 ) Layer 1 ! ( X411 X421 X431 X441 X451 X4M21 ) ! ( XM111 XM121 XM131 XM141 XM151 XM1M21 ) ! ! ( X11K X12K X13K X14K X15K X1M2K ) ! ( X21K ... .... .... .... X2M2K ) ! ( X31K ... .... .... .... X3M2K ) Layer K ! ( X41K ... .... .... .... X4M2K ) 1 < K < M3 ! ( XM11K XM12K XM13K XM14K XM15K XM1M2K ) ! ! ( X11M3 X12M3 X13M3 X14M3 X15M3 X1M2M3 ) ! ( X21M3 X22M3 X23M3 X24M3 X25M3 X2M2M3 ) ! ( X31M3 X32M3 X33M3 X34M3 X35M3 X3M2M3 ) Layer M3 ! ( X41M3 X42M3 X43M3 X44M3 X45M3 X4M2M3 ) ! ( XM11M3 XM12M3 XM13M3 XM14M3 XM15M3 XM1M2M3 ) ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 16 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X(M1,M2,M3). ! On input, there is already scalar data in the entries X(I,J,K) ! corresponding to "faces" of the table, that is, entries for which ! at least one of the three indices I, J and K is equal to their ! minimum or maximum possible values. ! On output, all entries in X have been assigned a value, using the ! table indices as independent variables. ! ! Input, integer ( kind = 4 ) M1, M2, M3, the number of rows, columns, and ! layers in X. ! implicit none integer ( kind = 4 ) m1 integer ( kind = 4 ) m2 integer ( kind = 4 ) m3 integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x(m1,m2,m3) ! ! Interpolate values in the interior. ! do i = 2, m1 - 1 r = real ( i - 1, kind = 8 ) & / real ( m1 - 1, kind = 8 ) do j = 2, m2 - 1 s = real ( j - 1, kind = 8 ) & / real ( m2 - 1, kind = 8 ) do k = 2, m3 - 1 t = real ( k - 1, kind = 8 ) & / real ( m3 - 1, kind = 8 ) call blend_123 ( r, s, t, & x( 1,1,1), x( 1, 1,m3), x( 1,m2,1), x( 1,m2,m3), & x(m1,1,1), x(m1, 1,m3), x(m1,m2,1), x(m1,m2,m3), & x( i,1,1), x( i, 1,m3), x( i,m2,1), x( i,m2,m3), & x( 1,j,1), x( 1, j,m3), x(m1, j,1), x(m1, j,m3), & x( 1,1,k), x( 1,m2, k), x(m1, 1,k), x(m1,m2, k), & x( 1,j,k), x(m1, j, k), x( i, 1,k), x( i,m2, k), & x( i,j,1), x( i, j,m3), x( i, j,k) ) end do end do end do return end subroutine blend_r_0dn ( r, x, n, bound_r ) !*****************************************************************************80 ! !! BLEND_R_0DN extends vector data at endpoints into a line. ! ! Diagram: ! ! 0-----r-----1 ! ! Discussion: ! ! This is simply linear interpolation. BLEND_R_0DN is provided ! mainly as a "base routine" which can be compared to its ! generalizations, such as BLEND_RS_0DN. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, the (R) coordinate of the point to ! be evaluated. ! ! Output, real ( kind = 8 ) X(N), the interpolated value at the point (R). ! ! Input, integer ( kind = 4 ) N, the dimension of the vector space. ! ! External, BOUND_R, is a subroutine which is given (R) coordinates ! and an component value I, and returns XI, the value of the I-th ! component of the N-vector at that point. BOUND_R will only be ! called for "corners", that is, for values (R) where R is either ! 0.0 or 1.0. BOUND_R has the form: ! ! subroutine bound_r ( r, i, xi ) ! implicit none integer ( kind = 4 ) n external bound_r integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) x(n) real ( kind = 8 ) x0 real ( kind = 8 ) x1 do i = 1, n ! ! Get the I-th coordinate component at the two corners. ! call bound_r ( 0.0D+00, i, x0 ) call bound_r ( 1.0D+00, i, x1 ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_101 ( r, x0, x1, x(i) ) end do return end subroutine blend_rs_0dn ( r, s, x, n, bound_rs ) !*****************************************************************************80 ! !! BLEND_RS_0DN extends vector data at corners into a square. ! ! Diagram: ! ! 01-----r1-----11 ! | . | ! | . | ! 0s.....rs.....1s ! | . | ! | . | ! 00-----r0-----10 ! ! Discussion: ! ! BLEND_RS_0DN should be equivalent to the use of a bilinear finite ! element method. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, the (R,S) coordinates of the point to be ! evaluated. ! ! Output, real ( kind = 8 ) X(N), the interpolated value at the point (R,S). ! ! Input, integer ( kind = 4 ) N, the dimension of the vector space. ! ! External, BOUND_RS, is a subroutine which is given (R,S) ! coordinates and an component value I, and returns XI, the value ! of the I-th component of the N-vector at that point. BOUND_RS ! will only be called for "corners", that is, for values (R,S) where ! R and S are either 0.0 or 1.0. BOUND_RS has the form: ! subroutine bound_rs ( r, s, i, xi ) ! implicit none integer ( kind = 4 ) n external bound_rs integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) x(n) real ( kind = 8 ) x00 real ( kind = 8 ) x01 real ( kind = 8 ) x10 real ( kind = 8 ) x11 real ( kind = 8 ) xr0 real ( kind = 8 ) xr1 real ( kind = 8 ) x0s real ( kind = 8 ) x1s do i = 1, n ! ! Get the I-th coordinate component at the four corners. ! call bound_rs ( 0.0D+00, 0.0D+00, i, x00 ) call bound_rs ( 0.0D+00, 1.0D+00, i, x01 ) call bound_rs ( 1.0D+00, 0.0D+00, i, x10 ) call bound_rs ( 1.0D+00, 1.0D+00, i, x11 ) ! ! Interpolate the I-th coordinate component at the sides. ! call blend_101 ( r, x00, x10, xr0 ) call blend_101 ( r, x01, x11, xr1 ) call blend_101 ( s, x00, x01, x0s ) call blend_101 ( s, x10, x11, x1s ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_112 ( r, s, x00, x01, x10, x11, xr0, xr1, x0s, x1s, x(i) ) end do return end subroutine blend_rs_1dn ( r, s, x, n, bound_rs ) !*****************************************************************************80 ! !! BLEND_RS_1DN extends vector data along sides into a square. ! ! Diagram: ! ! 01-----r1-----11 ! | . | ! | . | ! 0s.....rs.....1s ! | . | ! | . | ! 00-----r0-----10 ! ! Discussion: ! ! BLEND_RS_1DN is NOT equivalent to a bilinear finite element method, ! since the data is sampled everywhere along the boundary lines, ! rather than at a finite number of nodes. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, the (R,S) coordinates of the point to be ! evaluated. ! ! Output, real ( kind = 8 ) X(N), the interpolated value at the point (R,S). ! ! Input, integer ( kind = 4 ) N, the dimension of the vector space. ! ! External, BOUND_RS, is a subroutine which is given (R,S) ! coordinates and an component value I, and returns XI, the value ! of the I-th component of the N-vector at that point. BOUND_RS ! will only be called for "sides", that is, for values (R,S) where ! at least one of R and S is either 0.0 or 1.0. BOUND_RS has the ! form: ! subroutine bound_rs ( r, s, i, xi ) ! implicit none integer ( kind = 4 ) n external bound_rs integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) x(n) real ( kind = 8 ) x00 real ( kind = 8 ) x01 real ( kind = 8 ) x10 real ( kind = 8 ) x11 real ( kind = 8 ) xr0 real ( kind = 8 ) xr1 real ( kind = 8 ) x0s real ( kind = 8 ) x1s do i = 1, n ! ! Get the I-th coordinate component at the four corners. ! call bound_rs ( 0.0D+00, 0.0D+00, i, x00 ) call bound_rs ( 0.0D+00, 1.0D+00, i, x01 ) call bound_rs ( 1.0D+00, 0.0D+00, i, x10 ) call bound_rs ( 1.0D+00, 1.0D+00, i, x11 ) ! ! Get the I-th coordinate component at the sides. ! call bound_rs ( r, 0.0D+00, i, xr0 ) call bound_rs ( r, 1.0D+00, i, xr1 ) call bound_rs ( 0.0D+00, s, i, x0s ) call bound_rs ( 1.0D+00, s, i, x1s ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_112 ( r, s, x00, x01, x10, x11, xr0, xr1, x0s, x1s, x(i) ) end do return end subroutine blend_rst_0dn ( r, s, t, x, n, bound_rst ) !*****************************************************************************80 ! !! BLEND_RST_0DN extends vector data at corners into a cube. ! ! Diagram: ! ! 010-----r10-----110 011-----r11-----111 ! | . | | . | ! | . | | . | ! 0s0.....rs0.....1s0 0s1.....rs1.....1s1 S ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 001-----r01-----101 +----R ! BOTTOM TOP ! ! 011-----0s1-----001 111-----1s1-----101 ! | . | | . | ! | . | | . | ! 01t.....0st.....00t 11t.....1st.....10t T ! | . | | . | | ! | . | | . | | ! 010-----0s0-----000 110-----1s0-----100 S----+ ! LEFT RIGHT ! ! 001-----r01-----101 011-----r11-----111 ! | . | | . | ! | . | | . | ! 00t.....r0t.....100 01t.....r1t.....11t T ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 010-----r10-----110 +----R ! FRONT BACK ! ! Discussion: ! ! BLEND_RST_0DN is equivalent to a trilinear finite element method. ! Data along the edges, faces, and interior of the cube is ! interpolated from the data at the corners. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 14 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, T, the (R,S,T) coordinates of the ! point to be evaluated. ! ! Output, real ( kind = 8 ) X(N), the interpolated value at the ! point (R,S,T). ! ! Input, integer ( kind = 4 ) N, the dimension of the vector space. ! ! External, BOUND_RST, is a subroutine which is given (R,S,T) ! coordinates and an component value I, and returns XI, the value ! of the I-th component of the N-vector at that point. BOUND_RST ! will only be called for "corners", that is, for values (R,S,T) ! where R, S and T are either 0.0 or 1.0. BOUND_RST has the form: ! subroutine bound_rst ( r, s, t, i, xi ) ! implicit none integer ( kind = 4 ) n external bound_rst integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x(n) real ( kind = 8 ) x000 real ( kind = 8 ) x001 real ( kind = 8 ) x010 real ( kind = 8 ) x011 real ( kind = 8 ) x100 real ( kind = 8 ) x101 real ( kind = 8 ) x110 real ( kind = 8 ) x111 real ( kind = 8 ) xr00 real ( kind = 8 ) xr01 real ( kind = 8 ) xr10 real ( kind = 8 ) xr11 real ( kind = 8 ) x0s0 real ( kind = 8 ) x0s1 real ( kind = 8 ) x1s0 real ( kind = 8 ) x1s1 real ( kind = 8 ) x00t real ( kind = 8 ) x01t real ( kind = 8 ) x10t real ( kind = 8 ) x11t real ( kind = 8 ) x0st real ( kind = 8 ) x1st real ( kind = 8 ) xr0t real ( kind = 8 ) xr1t real ( kind = 8 ) xrs0 real ( kind = 8 ) xrs1 do i = 1, n ! ! Get the I-th coordinate component at the corners. ! call bound_rst ( 0.0D+00, 0.0D+00, 0.0D+00, i, x000 ) call bound_rst ( 0.0D+00, 0.0D+00, 1.0D+00, i, x001 ) call bound_rst ( 0.0D+00, 1.0D+00, 0.0D+00, i, x010 ) call bound_rst ( 0.0D+00, 1.0D+00, 1.0D+00, i, x011 ) call bound_rst ( 1.0D+00, 0.0D+00, 0.0D+00, i, x100 ) call bound_rst ( 1.0D+00, 0.0D+00, 1.0D+00, i, x101 ) call bound_rst ( 1.0D+00, 1.0D+00, 0.0D+00, i, x110 ) call bound_rst ( 1.0D+00, 1.0D+00, 1.0D+00, i, x111 ) ! ! Interpolate the I-th coordinate component at the edges. ! call blend_101 ( r, x000, x100, xr00 ) call blend_101 ( r, x001, x101, xr01 ) call blend_101 ( r, x010, x110, xr10 ) call blend_101 ( r, x011, x111, xr11 ) call blend_101 ( s, x000, x010, x0s0 ) call blend_101 ( s, x001, x011, x0s1 ) call blend_101 ( s, x100, x110, x1s0 ) call blend_101 ( s, x101, x111, x1s1 ) call blend_101 ( t, x000, x001, x00t ) call blend_101 ( t, x010, x011, x01t ) call blend_101 ( t, x100, x101, x10t ) call blend_101 ( t, x110, x111, x11t ) ! ! Interpolate the I-th component on the faces. ! call blend_112 ( s, t, x000, x001, x010, x011, x0s0, x0s1, x00t, & x01t, x0st ) call blend_112 ( s, t, x100, x101, x110, x111, x1s0, x1s1, x10t, & x11t, x1st ) call blend_112 ( r, t, x000, x001, x100, x101, xr00, xr01, x00t, & x10t, xr0t ) call blend_112 ( r, t, x010, x011, x110, x111, xr10, xr11, x01t, & x11t, xr1t ) call blend_112 ( r, s, x000, x010, x100, x110, xr00, xr10, x0s0, & x1s0, xrs0 ) call blend_112 ( r, s, x001, x011, x101, x111, xr01, xr11, x0s1, & x1s1, xrs1 ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_123 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, x111, & xr00, xr01, xr10, xr11, x0s0, x0s1, x1s0, x1s1, x00t, x01t, x10t, x11t, & x0st, x1st, xr0t, xr1t, xrs0, xrs1, x(i) ) end do return end subroutine blend_rst_1dn ( r, s, t, x, n, bound_rst ) !*****************************************************************************80 ! !! BLEND_RST_1DN extends vector data on edges into a cube. ! ! Diagram: ! ! 010-----r10-----110 011-----r11-----111 ! | . | | . | ! | . | | . | ! 0s0.....rs0.....1s0 0s1.....rs1.....1s1 S ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 001-----r01-----101 +----R ! BOTTOM TOP ! ! 011-----0s1-----001 111-----1s1-----101 ! | . | | . | ! | . | | . | ! 01t.....0st.....00t 11t.....1st.....10t T ! | . | | . | | ! | . | | . | | ! 010-----0s0-----000 110-----1s0-----100 S----+ ! LEFT RIGHT ! ! 001-----r01-----101 011-----r11-----111 ! | . | | . | ! | . | | . | ! 00t.....r0t.....100 01t.....r1t.....11t T ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 010-----r10-----110 +----R ! FRONT BACK ! ! Discussion: ! ! BLEND_RST_1D is NOT equivalent to a trilinear finite element method, ! since the data is sampled everywhere along the corners and edges, ! rather than at a finite number of nodes. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, T, the (R,S,T) coordinates of the ! point to be evaluated. ! ! Output, real ( kind = 8 ) X(N), the interpolated value at the ! point (R,S,T). ! ! Input, integer ( kind = 4 ) N, the dimension of the vector space. ! ! External, BOUND_RST, is a subroutine which is given (R,S,T) ! coordinates and an component value I, and returns XI, the value ! of the I-th component of the N-vector at that point. BOUND_RST ! will only be called for "edges", that is, for values (R,S,T) ! where at least two of R, S and T are either 0.0 or 1.0. ! BOUND_RST has the form: ! subroutine bound_rst ( r, s, t, i, xi ) ! implicit none integer ( kind = 4 ) n external bound_rst integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x(n) real ( kind = 8 ) x000 real ( kind = 8 ) x001 real ( kind = 8 ) x010 real ( kind = 8 ) x011 real ( kind = 8 ) x100 real ( kind = 8 ) x101 real ( kind = 8 ) x110 real ( kind = 8 ) x111 real ( kind = 8 ) xr00 real ( kind = 8 ) xr01 real ( kind = 8 ) xr10 real ( kind = 8 ) xr11 real ( kind = 8 ) x0s0 real ( kind = 8 ) x0s1 real ( kind = 8 ) x1s0 real ( kind = 8 ) x1s1 real ( kind = 8 ) x00t real ( kind = 8 ) x01t real ( kind = 8 ) x10t real ( kind = 8 ) x11t real ( kind = 8 ) x0st real ( kind = 8 ) x1st real ( kind = 8 ) xr0t real ( kind = 8 ) xr1t real ( kind = 8 ) xrs0 real ( kind = 8 ) xrs1 do i = 1, n ! ! Get the I-th coordinate component at the corners. ! call bound_rst ( 0.0D+00, 0.0D+00, 0.0D+00, i, x000 ) call bound_rst ( 0.0D+00, 0.0D+00, 1.0D+00, i, x001 ) call bound_rst ( 0.0D+00, 1.0D+00, 0.0D+00, i, x010 ) call bound_rst ( 0.0D+00, 1.0D+00, 1.0D+00, i, x011 ) call bound_rst ( 1.0D+00, 0.0D+00, 0.0D+00, i, x100 ) call bound_rst ( 1.0D+00, 0.0D+00, 1.0D+00, i, x101 ) call bound_rst ( 1.0D+00, 1.0D+00, 0.0D+00, i, x110 ) call bound_rst ( 1.0D+00, 1.0D+00, 1.0D+00, i, x111 ) ! ! Get the I-th coordinate component at the edges. ! call bound_rst ( r, 0.0D+00, 0.0D+00, i, xr00 ) call bound_rst ( r, 0.0D+00, 1.0D+00, i, xr01 ) call bound_rst ( r, 1.0D+00, 0.0D+00, i, xr10 ) call bound_rst ( r, 1.0D+00, 1.0D+00, i, xr11 ) call bound_rst ( 0.0D+00, s, 0.0D+00, i, x0s0 ) call bound_rst ( 0.0D+00, s, 1.0D+00, i, x0s1 ) call bound_rst ( 1.0D+00, s, 0.0D+00, i, x1s0 ) call bound_rst ( 1.0D+00, s, 1.0D+00, i, x1s1 ) call bound_rst ( 0.0D+00, 0.0D+00, t, i, x00t ) call bound_rst ( 0.0D+00, 1.0D+00, t, i, x01t ) call bound_rst ( 1.0D+00, 0.0D+00, t, i, x10t ) call bound_rst ( 1.0D+00, 1.0D+00, t, i, x11t ) ! ! Interpolate the I-th component on the faces. ! call blend_112 ( s, t, x000, x001, x010, x011, x0s0, x0s1, x00t, & x01t, x0st ) call blend_112 ( s, t, x100, x101, x110, x111, x1s0, x1s1, x10t, & x11t, x1st ) call blend_112 ( r, t, x000, x001, x100, x101, xr00, xr01, x00t, & x10t, xr0t ) call blend_112 ( r, t, x010, x011, x110, x111, xr10, xr11, x01t, & x11t, xr1t ) call blend_112 ( r, s, x000, x010, x100, x110, xr00, xr10, x0s0, & x1s0, xrs0 ) call blend_112 ( r, s, x001, x011, x101, x111, xr01, xr11, x0s1, & x1s1, xrs1 ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_123 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, x111, & xr00, xr01, xr10, xr11, x0s0, x0s1, x1s0, x1s1, x00t, x01t, x10t, x11t, & x0st, x1st, xr0t, xr1t, xrs0, xrs1, x(i) ) end do return end subroutine blend_rst_2dn ( r, s, t, x, n, bound_rst ) !*****************************************************************************80 ! !! BLEND_RST_2DN extends vector data on faces into a cube. ! ! Diagram: ! ! 010-----r10-----110 011-----r11-----111 ! | . | | . | ! | . | | . | ! 0s0.....rs0.....1s0 0s1.....rs1.....1s1 S ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 001-----r01-----101 +----R ! BOTTOM TOP ! ! 011-----0s1-----001 111-----1s1-----101 ! | . | | . | ! | . | | . | ! 01t.....0st.....00t 11t.....1st.....10t T ! | . | | . | | ! | . | | . | | ! 010-----0s0-----000 110-----1s0-----100 S----+ ! LEFT RIGHT ! ! 001-----r01-----101 011-----r11-----111 ! | . | | . | ! | . | | . | ! 00t.....r0t.....100 01t.....r1t.....11t T ! | . | | . | | ! | . | | . | | ! 000-----r00-----100 010-----r10-----110 +----R ! FRONT BACK ! ! Discussion: ! ! BLEND_RST_2DN is NOT equivalent to a trilinear finite element ! method, since the data is sampled everywhere along the corners, ! edges, and faces, rather than at a finite number of nodes. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 15 December 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Gordon, ! Blending-Function Methods of Bivariate and Multivariate Interpolation ! and Approximation, ! SIAM Journal on Numerical Analysis, ! Volume 8, Number 1, March 1971, pages 158-177. ! ! William Gordon and Charles Hall, ! Transfinite Element Methods: Blending-Function Interpolation over ! Arbitrary Curved Element Domains, ! Numerische Mathematik, ! Volume 21, Number 1, 1973, pages 109-129. ! ! William Gordon and Charles Hall, ! Construction of Curvilinear Coordinate Systems and Application to ! Mesh Generation, ! International Journal of Numerical Methods in Engineering, ! Volume 7, 1973, pages 461-477. ! ! Joe Thompson, Bharat Soni, Nigel Weatherill, ! Handbook of Grid Generation, ! CRC Press, 1999. ! ! Parameters: ! ! Input, real ( kind = 8 ) R, S, T, the (R,S,T) coordinates of the point ! to be evaluated. ! ! Output, real ( kind = 8 ) X(N), the interpolated value at the ! point (R,S,T). ! ! Input, integer ( kind = 4 ) N, the dimension of the vector space. ! ! External, BOUND_RST, is a subroutine which is given (R,S,T) ! coordinates and an component value I, and returns XI, the value ! of the I-th component of the N-vector at that point. BOUND_RST ! will only be called for "faces", that is, for values (R,S,T) where ! at least one of R, S and T is either 0.0 or 1.0. BOUND_RST has ! the form: ! subroutine bound_rst ( r, s, t, i, xi ) ! implicit none integer ( kind = 4 ) n external bound_rst integer ( kind = 4 ) i real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) x(n) real ( kind = 8 ) x000 real ( kind = 8 ) x001 real ( kind = 8 ) x010 real ( kind = 8 ) x011 real ( kind = 8 ) x100 real ( kind = 8 ) x101 real ( kind = 8 ) x110 real ( kind = 8 ) x111 real ( kind = 8 ) xr00 real ( kind = 8 ) xr01 real ( kind = 8 ) xr10 real ( kind = 8 ) xr11 real ( kind = 8 ) x0s0 real ( kind = 8 ) x0s1 real ( kind = 8 ) x1s0 real ( kind = 8 ) x1s1 real ( kind = 8 ) x00t real ( kind = 8 ) x01t real ( kind = 8 ) x10t real ( kind = 8 ) x11t real ( kind = 8 ) x0st real ( kind = 8 ) x1st real ( kind = 8 ) xr0t real ( kind = 8 ) xr1t real ( kind = 8 ) xrs0 real ( kind = 8 ) xrs1 do i = 1, n ! ! Get the I-th coordinate component at the corners. ! call bound_rst ( 0.0D+00, 0.0D+00, 0.0D+00, i, x000 ) call bound_rst ( 0.0D+00, 0.0D+00, 1.0D+00, i, x001 ) call bound_rst ( 0.0D+00, 1.0D+00, 0.0D+00, i, x010 ) call bound_rst ( 0.0D+00, 1.0D+00, 1.0D+00, i, x011 ) call bound_rst ( 1.0D+00, 0.0D+00, 0.0D+00, i, x100 ) call bound_rst ( 1.0D+00, 0.0D+00, 1.0D+00, i, x101 ) call bound_rst ( 1.0D+00, 1.0D+00, 0.0D+00, i, x110 ) call bound_rst ( 1.0D+00, 1.0D+00, 1.0D+00, i, x111 ) ! ! Get the I-th coordinate component at the edges. ! call bound_rst ( r, 0.0D+00, 0.0D+00, i, xr00 ) call bound_rst ( r, 0.0D+00, 1.0D+00, i, xr01 ) call bound_rst ( r, 1.0D+00, 0.0D+00, i, xr10 ) call bound_rst ( r, 1.0D+00, 1.0D+00, i, xr11 ) call bound_rst ( 0.0D+00, s, 0.0D+00, i, x0s0 ) call bound_rst ( 0.0D+00, s, 1.0D+00, i, x0s1 ) call bound_rst ( 1.0D+00, s, 0.0D+00, i, x1s0 ) call bound_rst ( 1.0D+00, s, 1.0D+00, i, x1s1 ) call bound_rst ( 0.0D+00, 0.0D+00, t, i, x00t ) call bound_rst ( 0.0D+00, 1.0D+00, t, i, x01t ) call bound_rst ( 1.0D+00, 0.0D+00, t, i, x10t ) call bound_rst ( 1.0D+00, 1.0D+00, t, i, x11t ) ! ! Get the I-th component on the faces. ! call bound_rst ( 0.0D+00, s, t, i, x0st ) call bound_rst ( 1.0D+00, s, t, i, x1st ) call bound_rst ( r, 0.0D+00, t, i, xr0t ) call bound_rst ( r, 1.0D+00, t, i, xr1t ) call bound_rst ( r, s, 0.0D+00, i, xrs0 ) call bound_rst ( r, s, 1.0D+00, i, xrs1 ) ! ! Interpolate the I-th coordinate component of the interior point. ! call blend_123 ( r, s, t, x000, x001, x010, x011, x100, x101, x110, x111, & xr00, xr01, xr10, xr11, x0s0, x0s1, x1s0, x1s1, x00t, x01t, x10t, x11t, & x0st, x1st, xr0t, xr1t, xrs0, xrs1, x(i) ) end do return end subroutine r8block_print ( l, m, n, a, title ) !*****************************************************************************80 ! !! R8BLOCK_PRINT prints a real block (a 3D matrix). ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 October 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) L, M, N, the dimensions of the block. ! ! Input, real ( kind = 8 ) A(L,M,N), the matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) l integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(l,m,n) integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo integer ( kind = 4 ) k character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do k = 1, n write ( *, '(a)' ) ' ' write ( *, '(a,i6)' ) ' K = ', k write ( *, '(a)' ) ' ' do jlo = 1, m, 5 jhi = min ( jlo + 4, m ) write ( *, '(a)' ) ' ' write ( *, '(6x,5(i7,7x))' ) (j, j = jlo, jhi ) write ( *, '(a)' ) ' ' do i = 1, l write ( *, '(i6,5g14.6)' ) i, a(i,jlo:jhi,k) end do end do end do return end subroutine r8mat_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_PRINT prints an R8MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 20 May 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows in A. ! ! Input, integer ( kind = 4 ) N, the number of columns in A. ! ! Input, real ( kind = 8 ) A(M,N), the matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8mat_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_PRINT_SOME prints some of an R8MAT. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 November 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)') j end do write ( *, '('' Col '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j), j = 1, inc ) end do end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 22 August 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, real ( kind = 8 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n) integer ( kind = 4 ) i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,a,1x,g16.8)' ) i, ':', a(i) end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end