program main !*****************************************************************************80 ! !! MAIN is the main program for BLAS3_D_TEST. ! ! Discussion: ! ! BLAS3_D_TEST tests the BLAS library. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 11 February 2017 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BLAS3_D_TEST' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test the BLAS library.' call dgemm_test ( ) call dtrmm_test ( ) call dtrsm_test ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BLAS3_D_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine dgemm_test ( ) !*****************************************************************************80 ! !! DGEMM_TEST tests DGEMM. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 10 February 2014 ! ! Author: ! ! John Burkardt ! implicit none real ( kind = 8 ), allocatable :: a(:,:) real ( kind = 8 ) alpha real ( kind = 8 ), allocatable :: b(:,:) real ( kind = 8 ) beta real ( kind = 8 ), allocatable :: c(:,:) integer ( kind = 4 ) k integer ( kind = 4 ) lda integer ( kind = 4 ) ldb integer ( kind = 4 ) ldc integer ( kind = 4 ) m integer ( kind = 4 ) n character transa character transb character transc write ( *, '(a)' ) '' write ( *, '(a)' ) 'DGEMM_TEST' write ( *, '(a)' ) ' DGEMM multiplies two matrices A and B.' write ( *, '(a)' ) '' write ( *, '(a)' ) ' 1: C = alpha * A * B + beta * C;' write ( *, '(a)' ) ' 2: C = alpha * A'' * B + beta * C;' write ( *, '(a)' ) ' 3: C = alpha * A * B'' + beta * C;' write ( *, '(a)' ) ' 4: C = alpha * A'' * B'' + beta * C;' write ( *, '(a)' ) '' write ( *, '(a)' ) ' We carry out all four calculations, but in each case,' write ( *, '(a)' ) ' we choose our input matrices so that we get the same result.' ! ! C = alpha * A * B + beta * C. ! transa = 'N' transb = 'N' transc = 'N' m = 4 n = 5 k = 3 alpha = 2.0D+00 lda = m allocate ( a(1:lda,1:k) ) call r8mat_test ( transa, lda, m, k, a ) ldb = k allocate ( b(1:ldb,1:n) ) call r8mat_test ( transb, ldb, k, n, b ) beta = 3.0D+00 ldc = m allocate ( c(1:ldc,1:n) ) call r8mat_test ( transc, ldc, m, n, c ) call dgemm ( transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) call r8mat_print ( m, n, c, ' C = alpha * A * B + beta * C:' ); deallocate ( a ) deallocate ( b ) deallocate ( c ) ! ! C = alpha * A' * B + beta * C. ! transa = 'T' transb = 'N' transc = 'N' m = 4 n = 5 k = 3 alpha = 2.0D+00 lda = k allocate ( a(1:lda,1:m) ) call r8mat_test ( transa, lda, m, k, a ) ldb = k allocate ( b(1:ldb,1:n) ) call r8mat_test ( transb, ldb, k, n, b ) beta = 3.0D+00 ldc = m allocate ( c(1:ldc,1:n) ) call r8mat_test ( transc, ldc, m, n, c ) call dgemm ( transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) call r8mat_print ( m, n, c, ' C = alpha * A'' * B + beta * C:' ) deallocate ( a ) deallocate ( b ) deallocate ( c ) ! ! C = alpha * A * B' + beta * C. ! transa = 'N' transb = 'T' transc = 'N' m = 4 n = 5 k = 3 alpha = 2.0D+00 lda = m allocate ( a(1:lda,1:k) ) call r8mat_test ( transa, lda, m, k, a ) ldb = n allocate ( b(1:ldb,1:k) ) call r8mat_test ( transb, ldb, k, n, b ) beta = 3.0D+00 ldc = m allocate ( c(1:ldc,1:n) ) call r8mat_test ( transc, ldc, m, n, c ) call dgemm ( transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) call r8mat_print ( m, n, c, ' C = alpha * A * B'' + beta * C:' ) deallocate ( a ) deallocate ( b ) deallocate ( c ) ! ! C = alpha * A' * B' + beta * C. ! transa = 'T' transb = 'T' transc = 'N' m = 4 n = 5 k = 3 alpha = 2.0D+00 lda = k allocate ( a(1:lda,1:m) ) call r8mat_test ( transa, lda, m, k, a ) ldb = n allocate ( b(1:ldb,1:k) ) call r8mat_test ( transb, ldb, k, n, b ) beta = 3.0D+00 ldc = m allocate ( c(1:ldc,1:n) ) call r8mat_test ( transc, ldc, m, n, c ) call dgemm ( transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc ) call r8mat_print ( m, n, c, ' C = alpha * A'' * B'' + beta * C:' ) deallocate ( a ) deallocate ( b ) deallocate ( c ) return end subroutine dtrmm_test ( ) !*****************************************************************************80 ! !! DTRMM_TEST tests DTRMM. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 April 2014 ! ! Author: ! ! John Burkardt ! implicit none real ( kind = 8 ), allocatable :: a(:,:) real ( kind = 8 ) alpha real ( kind = 8 ), allocatable :: b(:,:) character diag integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) lda integer ( kind = 4 ) ldb integer ( kind = 4 ) m integer ( kind = 4 ) n character side character transa character transb character uplo write ( *, '(a)' ) '' write ( *, '(a)' ) 'DTRMM_TEST' write ( *, '(a)' ) ' DTRMM multiplies a triangular matrix A and a' write ( *, '(a)' ) ' rectangular matrix B' write ( *, '(a)' ) '' write ( *, '(a)' ) ' 1: B = alpha * A * B;' write ( *, '(a)' ) ' 2: B = alpha * A'' * B;' ! ! B = alpha * A * B. ! side = 'L' uplo = 'U' transa = 'N' diag = 'N' m = 4 n = 5 alpha = 2.0D+00 lda = m ldb = m allocate ( a(1:lda,1:m) ) do j = 1, m do i = 1, j a(i,j) = real ( i + j, kind = 8 ) end do do i = j + 1, m a(i,j) = 0.0D+00 end do end do allocate ( b(1:ldb,1:n) ) transb = 'N' call r8mat_test ( transb, ldb, m, n, b ) call dtrmm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb ) call r8mat_print ( m, n, b, ' B = alpha * A * B:' ); deallocate ( a ) deallocate ( b ) ! ! B = alpha * A' * B. ! side = 'L' uplo = 'U' transa = 'T' diag = 'N' m = 4 n = 5 alpha = 2.0D+00 lda = m ldb = m allocate ( a(1:lda,1:m) ) do j = 1, m do i = 1, j a(i,j) = real ( i + j, kind = 8 ) end do do i = j + 1, m a(i,j) = 0.0D+00 end do end do allocate ( b(1:ldb,1:n) ) transb = 'N' call r8mat_test ( transb, ldb, m, n, b ) call dtrmm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb ) call r8mat_print ( m, n, b, ' B = alpha * A * B:' ); deallocate ( a ) deallocate ( b ) return end subroutine dtrsm_test ( ) !*****************************************************************************80 ! !! DTRSM_TEST tests DTRSM. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 06 April 2014 ! ! Author: ! ! John Burkardt ! implicit none real ( kind = 8 ), allocatable :: a(:,:) real ( kind = 8 ) alpha real ( kind = 8 ), allocatable :: b(:,:) character diag integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) lda integer ( kind = 4 ) ldb integer ( kind = 4 ) m integer ( kind = 4 ) n character side character transa character transb character uplo write ( *, '(a)' ) '' write ( *, '(a)' ) 'DTRSM_TEST' write ( *, '(a)' ) ' DTRSM solves a linear system involving a triangular' write ( *, '(a)' ) ' matrix A and a rectangular matrix B.' write ( *, '(a)' ) '' write ( *, '(a)' ) ' 1: Solve A * X = alpha * B;' write ( *, '(a)' ) ' 2: Solve A'' * X = alpha * B;' write ( *, '(a)' ) ' 3: Solve X * A = alpha * B;' write ( *, '(a)' ) ' 4: Solve X * A'' = alpha * B;' ! ! Solve A * X = alpha * B. ! side = 'L' uplo = 'U' transa = 'N' diag = 'N' m = 4 n = 5 alpha = 2.0D+00 lda = m ldb = m allocate ( a(1:lda,1:m) ) do j = 1, m do i = 1, j a(i,j) = real ( i + j, kind = 8 ) end do do i = j + 1, m a(i,j) = 0.0D+00 end do end do allocate ( b(1:ldb,1:n) ) transb = 'N' call r8mat_test ( transb, ldb, m, n, b ) call dtrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb ) call r8mat_print ( m, n, b, ' X = inv ( A ) * alpha * B:' ); deallocate ( a ) deallocate ( b ) ! ! Solve A' * X = alpha * B. ! side = 'L' uplo = 'U' transa = 'T' diag = 'N' m = 4 n = 5 alpha = 2.0D+00 lda = m ldb = m allocate ( a(1:lda,1:m) ) do j = 1, m do i = 1, j a(i,j) = real ( i + j, kind = 8 ) end do do i = j + 1, m a(i,j) = 0.0D+00 end do end do allocate ( b(1:ldb,1:n) ) transb = 'N' call r8mat_test ( transb, ldb, m, n, b ) call dtrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb ) call r8mat_print ( m, n, b, ' X = inv ( A'' ) * alpha * B:' ); deallocate ( a ) deallocate ( b ) ! ! Solve X * A = alpha * B. ! side = 'R' uplo = 'U' transa = 'N' diag = 'N' m = 4 n = 5 alpha = 2.0D+00 lda = n ldb = m allocate ( a(1:lda,1:n) ) do j = 1, n do i = 1, j a(i,j) = real ( i + j, kind = 8 ) end do do i = j + 1, n a(i,j) = 0.0D+00 end do end do allocate ( b(1:ldb,1:n) ) transb = 'N' call r8mat_test ( transb, ldb, m, n, b ) call dtrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb ) call r8mat_print ( m, n, b, ' X = alpha * B * inv ( A ):' ); deallocate ( a ) deallocate ( b ) ! ! Solve X * A'' = alpha * B. ! side = 'R' uplo = 'U' transa = 'T' diag = 'N' m = 4 n = 5 alpha = 2.0D+00 lda = n ldb = m allocate ( a(1:lda,1:n) ) do j = 1, n do i = 1, j a(i,j) = real ( i + j, kind = 8 ) end do do i = j + 1, n a(i,j) = 0.0D+00 end do end do allocate ( b(1:ldb,1:n) ) transb = 'N' call r8mat_test ( transb, ldb, m, n, b ) call dtrsm ( side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb ) call r8mat_print ( m, n, b, ' X = alpha * B * inv ( A'' ):' ); deallocate ( a ) deallocate ( b ) return end