SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,KL,KU,LDA,M,N CHARACTER TRANS ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZGBMV performs one of the matrix-vector operations ! ! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or ! ! y := alpha*A**H*x + beta*y, ! ! where alpha and beta are scalars, x and y are vectors and A is an ! m by n band matrix, with kl sub-diagonals and ku super-diagonals. ! ! Arguments ! ========== ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the operation to be performed as ! follows: ! ! TRANS = 'N' or 'n' y := alpha*A*x + beta*y. ! ! TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. ! ! TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. ! ! Unchanged on exit. ! ! M - INTEGER. ! On entry, M specifies the number of rows of the matrix A. ! M must be at least zero. ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the number of columns of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! KL - INTEGER. ! On entry, KL specifies the number of sub-diagonals of the ! matrix A. KL must satisfy 0 .le. KL. ! Unchanged on exit. ! ! KU - INTEGER. ! On entry, KU specifies the number of super-diagonals of the ! matrix A. KU must satisfy 0 .le. KU. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry, the leading ( kl + ku + 1 ) by n part of the ! array A must contain the matrix of coefficients, supplied ! column by column, with the leading diagonal of the matrix in ! row ( ku + 1 ) of the array, the first super-diagonal ! starting at position 2 in row ku, the first sub-diagonal ! starting at position 1 in row ( ku + 2 ), and so on. ! Elements in the array A that do not correspond to elements ! in the band matrix (such as the top left ku by ku triangle) ! are not referenced. ! The following program segment will transfer a band matrix ! from conventional full matrix storage to band storage: ! ! DO 20, J = 1, N ! K = KU + 1 - J ! DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) ! A( K + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! ( kl + ku + 1 ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of DIMENSION at least ! ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' ! and at least ! ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. ! Before entry, the incremented array X must contain the ! vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! BETA - COMPLEX*16 . ! On entry, BETA specifies the scalar beta. When BETA is ! supplied as zero then Y need not be set on input. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of DIMENSION at least ! ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' ! and at least ! ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. ! Before entry, the incremented array Y must contain the ! vector y. On exit, Y is overwritten by the updated vector y. ! ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY LOGICAL NOCONJ ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX,MIN ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (KL.LT.0) THEN INFO = 4 ELSE IF (KU.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (KL+KU+1)) THEN INFO = 8 ELSE IF (INCX.EQ.0) THEN INFO = 10 ELSE IF (INCY.EQ.0) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGBMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((M.EQ.0) .OR. (N.EQ.0) .OR. & ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN ! NOCONJ = LSAME(TRANS,'T') ! ! Set LENX and LENY, the lengths of the vectors x and y, and set ! up the start points in X and Y. ! IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through the band part of A. ! ! First form y := beta*y. ! IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KUP1 = KU + 1 IF (LSAME(TRANS,'N')) THEN ! ! Form y := alpha*A*x + y. ! JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) K = KUP1 - J DO 50 I = MAX(1,J-KU),MIN(M,J+KL) Y(I) = Y(I) + TEMP*A(K+I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY K = KUP1 - J DO 70 I = MAX(1,J-KU),MIN(M,J+KL) Y(IY) = Y(IY) + TEMP*A(K+I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX IF (J.GT.KU) KY = KY + INCY 80 CONTINUE END IF ELSE ! ! Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. ! JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO K = KUP1 - J IF (NOCONJ) THEN DO 90 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(I) 90 CONTINUE ELSE DO 100 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + DCONJG(A(K+I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX K = KUP1 - J IF (NOCONJ) THEN DO 120 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + DCONJG(A(K+I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY IF (J.GT.KU) KX = KX + INCX 140 CONTINUE END IF END IF ! RETURN ! ! End of ZGBMV . ! END SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,M,N CHARACTER TRANS ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZGEMV performs one of the matrix-vector operations ! ! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or ! ! y := alpha*A**H*x + beta*y, ! ! where alpha and beta are scalars, x and y are vectors and A is an ! m by n matrix. ! ! Arguments ! ========== ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the operation to be performed as ! follows: ! ! TRANS = 'N' or 'n' y := alpha*A*x + beta*y. ! ! TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. ! ! TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. ! ! Unchanged on exit. ! ! M - INTEGER. ! On entry, M specifies the number of rows of the matrix A. ! M must be at least zero. ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the number of columns of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry, the leading m by n part of the array A must ! contain the matrix of coefficients. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, m ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of DIMENSION at least ! ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' ! and at least ! ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. ! Before entry, the incremented array X must contain the ! vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! BETA - COMPLEX*16 . ! On entry, BETA specifies the scalar beta. When BETA is ! supplied as zero then Y need not be set on input. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of DIMENSION at least ! ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' ! and at least ! ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. ! Before entry with BETA non-zero, the incremented array Y ! must contain the vector y. On exit, Y is overwritten by the ! updated vector y. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY LOGICAL NOCONJ ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGEMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((M.EQ.0) .OR. (N.EQ.0) .OR. & ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN ! NOCONJ = LSAME(TRANS,'T') ! ! Set LENX and LENY, the lengths of the vectors x and y, and set ! up the start points in X and Y. ! IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! ! First form y := beta*y. ! IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(TRANS,'N')) THEN ! ! Form y := alpha*A*x + y. ! JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) DO 50 I = 1,M Y(I) = Y(I) + TEMP*A(I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY DO 70 I = 1,M Y(IY) = Y(IY) + TEMP*A(I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE ! ! Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. ! JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO IF (NOCONJ) THEN DO 90 I = 1,M TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE DO 100 I = 1,M TEMP = TEMP + DCONJG(A(I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX IF (NOCONJ) THEN DO 120 I = 1,M TEMP = TEMP + A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = 1,M TEMP = TEMP + DCONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 140 CONTINUE END IF END IF ! RETURN ! ! End of ZGEMV . ! END SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZGERC performs the rank 1 operation ! ! A := alpha*x*y**H + A, ! ! where alpha is a scalar, x is an m element vector, y is an n element ! vector and A is an m by n matrix. ! ! Arguments ! ========== ! ! M - INTEGER. ! On entry, M specifies the number of rows of the matrix A. ! M must be at least zero. ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the number of columns of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( m - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the m ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. ! Unchanged on exit. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry, the leading m by n part of the array A must ! contain the matrix of coefficients. On exit, A is ! overwritten by the updated matrix. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, m ). ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGERC ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*DCONJG(Y(JY)) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*DCONJG(Y(JY)) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF ! RETURN ! ! End of ZGERC . ! END SUBROUTINE ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZGERU performs the rank 1 operation ! ! A := alpha*x*y**T + A, ! ! where alpha is a scalar, x is an m element vector, y is an n element ! vector and A is an m by n matrix. ! ! Arguments ! ========== ! ! M - INTEGER. ! On entry, M specifies the number of rows of the matrix A. ! M must be at least zero. ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the number of columns of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( m - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the m ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. ! Unchanged on exit. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry, the leading m by n part of the array A must ! contain the matrix of coefficients. On exit, A is ! overwritten by the updated matrix. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, m ). ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGERU ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF ! RETURN ! ! End of ZGERU . ! END SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,K,LDA,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZHBMV performs the matrix-vector operation ! ! y := alpha*A*x + beta*y, ! ! where alpha and beta are scalars, x and y are n element vectors and ! A is an n by n hermitian band matrix, with k super-diagonals. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the band matrix A is being supplied as ! follows: ! ! UPLO = 'U' or 'u' The upper triangular part of A is ! being supplied. ! ! UPLO = 'L' or 'l' The lower triangular part of A is ! being supplied. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! K - INTEGER. ! On entry, K specifies the number of super-diagonals of the ! matrix A. K must satisfy 0 .le. K. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) ! by n part of the array A must contain the upper triangular ! band part of the hermitian matrix, supplied column by ! column, with the leading diagonal of the matrix in row ! ( k + 1 ) of the array, the first super-diagonal starting at ! position 2 in row k, and so on. The top left k by k triangle ! of the array A is not referenced. ! The following program segment will transfer the upper ! triangular part of a hermitian band matrix from conventional ! full matrix storage to band storage: ! ! DO 20, J = 1, N ! M = K + 1 - J ! DO 10, I = MAX( 1, J - K ), J ! A( M + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) ! by n part of the array A must contain the lower triangular ! band part of the hermitian matrix, supplied column by ! column, with the leading diagonal of the matrix in row 1 of ! the array, the first sub-diagonal starting at position 1 in ! row 2, and so on. The bottom right k by k triangle of the ! array A is not referenced. ! The following program segment will transfer the lower ! triangular part of a hermitian band matrix from conventional ! full matrix storage to band storage: ! ! DO 20, J = 1, N ! M = 1 - J ! DO 10, I = J, MIN( N, J + K ) ! A( M + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Note that the imaginary parts of the diagonal elements need ! not be set and are assumed to be zero. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! ( k + 1 ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of DIMENSION at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the ! vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! BETA - COMPLEX*16 . ! On entry, BETA specifies the scalar beta. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of DIMENSION at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the ! vector y. On exit, Y is overwritten by the updated vector y. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX,MIN ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (K.LT.0) THEN INFO = 3 ELSE IF (LDA.LT. (K+1)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHBMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN ! ! Set up the start points in X and Y. ! IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF ! ! Start the operations. In this version the elements of the array A ! are accessed sequentially with one pass through A. ! ! First form y := beta*y. ! IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN ! ! Form y when upper triangle of A is stored. ! KPLUS1 = K + 1 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO L = KPLUS1 - J DO 50 I = MAX(1,J-K),J - 1 Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY L = KPLUS1 - J DO 70 I = MAX(1,J-K),J - 1 Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY IF (J.GT.K) THEN KX = KX + INCX KY = KY + INCY END IF 80 CONTINUE END IF ELSE ! ! Form y when lower triangle of A is stored. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*DBLE(A(1,J)) L = 1 - J DO 90 I = J + 1,MIN(N,J+K) Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J)) L = 1 - J IX = JX IY = JY DO 110 I = J + 1,MIN(N,J+K) IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF ! RETURN ! ! End of ZHBMV . ! END SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZHEMV performs the matrix-vector operation ! ! y := alpha*A*x + beta*y, ! ! where alpha and beta are scalars, x and y are n element vectors and ! A is an n by n hermitian matrix. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the array A is to be referenced as ! follows: ! ! UPLO = 'U' or 'u' Only the upper triangular part of A ! is to be referenced. ! ! UPLO = 'L' or 'l' Only the lower triangular part of A ! is to be referenced. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading n by n ! upper triangular part of the array A must contain the upper ! triangular part of the hermitian matrix and the strictly ! lower triangular part of A is not referenced. ! Before entry with UPLO = 'L' or 'l', the leading n by n ! lower triangular part of the array A must contain the lower ! triangular part of the hermitian matrix and the strictly ! upper triangular part of A is not referenced. ! Note that the imaginary parts of the diagonal elements need ! not be set and are assumed to be zero. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, n ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! BETA - COMPLEX*16 . ! On entry, BETA specifies the scalar beta. When BETA is ! supplied as zero then Y need not be set on input. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. On exit, Y is overwritten by the updated ! vector y. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHEMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN ! ! Set up the start points in X and Y. ! IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through the triangular part ! of A. ! ! First form y := beta*y. ! IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN ! ! Form y when A is stored in upper triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE ! ! Form y when A is stored in lower triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF ! RETURN ! ! End of ZHEMV . ! END SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZHER2 performs the hermitian rank 2 operation ! ! A := alpha*x*y**H + conjg( alpha )*y*x**H + A, ! ! where alpha is a scalar, x and y are n element vectors and A is an n ! by n hermitian matrix. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the array A is to be referenced as ! follows: ! ! UPLO = 'U' or 'u' Only the upper triangular part of A ! is to be referenced. ! ! UPLO = 'L' or 'l' Only the lower triangular part of A ! is to be referenced. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. ! Unchanged on exit. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading n by n ! upper triangular part of the array A must contain the upper ! triangular part of the hermitian matrix and the strictly ! lower triangular part of A is not referenced. On exit, the ! upper triangular part of the array A is overwritten by the ! upper triangular part of the updated matrix. ! Before entry with UPLO = 'L' or 'l', the leading n by n ! lower triangular part of the array A must contain the lower ! triangular part of the hermitian matrix and the strictly ! upper triangular part of A is not referenced. On exit, the ! lower triangular part of the array A is overwritten by the ! lower triangular part of the updated matrix. ! Note that the imaginary parts of the diagonal elements need ! not be set, they are assumed to be zero, and on exit they ! are set to zero. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, n ). ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER2 ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN ! ! Set up the start points in X and Y if the increments are not both ! unity. ! IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through the triangular part ! of A. ! IF (LSAME(UPLO,'U')) THEN ! ! Form A when A is stored in the upper triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE A(J,J) = DBLE(A(J,J)) + & DBLE(X(J)*TEMP1+Y(J)*TEMP2) ELSE A(J,J) = DBLE(A(J,J)) END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE A(J,J) = DBLE(A(J,J)) + & DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE ! ! Form A when A is stored in the lower triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) A(J,J) = DBLE(A(J,J)) + & DBLE(X(J)*TEMP1+Y(J)*TEMP2) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) A(J,J) = DBLE(A(J,J)) + & DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 I = J + 1,N IX = IX + INCX IY = IY + INCY A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF ! RETURN ! ! End of ZHER2 . ! END SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA) ! .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,LDA,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) ! .. ! ! Purpose ! ======= ! ! ZHER performs the hermitian rank 1 operation ! ! A := alpha*x*x**H + A, ! ! where alpha is a real scalar, x is an n element vector and A is an ! n by n hermitian matrix. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the array A is to be referenced as ! follows: ! ! UPLO = 'U' or 'u' Only the upper triangular part of A ! is to be referenced. ! ! UPLO = 'L' or 'l' Only the lower triangular part of A ! is to be referenced. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - DOUBLE PRECISION. ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading n by n ! upper triangular part of the array A must contain the upper ! triangular part of the hermitian matrix and the strictly ! lower triangular part of A is not referenced. On exit, the ! upper triangular part of the array A is overwritten by the ! upper triangular part of the updated matrix. ! Before entry with UPLO = 'L' or 'l', the leading n by n ! lower triangular part of the array A must contain the lower ! triangular part of the hermitian matrix and the strictly ! upper triangular part of A is not referenced. On exit, the ! lower triangular part of the array A is overwritten by the ! lower triangular part of the updated matrix. ! Note that the imaginary parts of the diagonal elements need ! not be set, they are assumed to be zero, and on exit they ! are set to zero. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, n ). ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN ! ! Set the start point in X if the increment is not unity. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through the triangular part ! of A. ! IF (LSAME(UPLO,'U')) THEN ! ! Form A when A is stored in upper triangle. ! IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP) ELSE A(J,J) = DBLE(A(J,J)) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) IX = KX DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP) ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX 40 CONTINUE END IF ELSE ! ! Form A when A is stored in lower triangle. ! IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J)) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX)) IX = JX DO 70 I = J + 1,N IX = IX + INCX A(I,J) = A(I,J) + X(IX)*TEMP 70 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX 80 CONTINUE END IF END IF ! RETURN ! ! End of ZHER . ! END SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZHPMV performs the matrix-vector operation ! ! y := alpha*A*x + beta*y, ! ! where alpha and beta are scalars, x and y are n element vectors and ! A is an n by n hermitian matrix, supplied in packed form. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the matrix A is supplied in the packed ! array AP as follows: ! ! UPLO = 'U' or 'u' The upper triangular part of A is ! supplied in AP. ! ! UPLO = 'L' or 'l' The lower triangular part of A is ! supplied in AP. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! AP - COMPLEX*16 array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular part of the hermitian matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) ! and a( 2, 2 ) respectively, and so on. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular part of the hermitian matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) ! and a( 3, 1 ) respectively, and so on. ! Note that the imaginary parts of the diagonal elements need ! not be set and are assumed to be zero. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! BETA - COMPLEX*16 . ! On entry, BETA specifies the scalar beta. When BETA is ! supplied as zero then Y need not be set on input. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. On exit, Y is overwritten by the updated ! vector y. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHPMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN ! ! Set up the start points in X and Y. ! IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF ! ! Start the operations. In this version the elements of the array AP ! are accessed sequentially with one pass through AP. ! ! First form y := beta*y. ! IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN ! ! Form y when AP contains the upper triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE ! ! Form y when AP contains the lower triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*DBLE(AP(KK)) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK)) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF ! RETURN ! ! End of ZHPMV . ! END SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) ! .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! ZHPR2 performs the hermitian rank 2 operation ! ! A := alpha*x*y**H + conjg( alpha )*y*x**H + A, ! ! where alpha is a scalar, x and y are n element vectors and A is an ! n by n hermitian matrix, supplied in packed form. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the matrix A is supplied in the packed ! array AP as follows: ! ! UPLO = 'U' or 'u' The upper triangular part of A is ! supplied in AP. ! ! UPLO = 'L' or 'l' The lower triangular part of A is ! supplied in AP. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - COMPLEX*16 . ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Y - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. ! Unchanged on exit. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! AP - COMPLEX*16 array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular part of the hermitian matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) ! and a( 2, 2 ) respectively, and so on. On exit, the array ! AP is overwritten by the upper triangular part of the ! updated matrix. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular part of the hermitian matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) ! and a( 3, 1 ) respectively, and so on. On exit, the array ! AP is overwritten by the lower triangular part of the ! updated matrix. ! Note that the imaginary parts of the diagonal elements need ! not be set, they are assumed to be zero, and on exit they ! are set to zero. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHPR2 ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN ! ! Set up the start points in X and Y if the increments are not both ! unity. ! IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF ! ! Start the operations. In this version the elements of the array AP ! are accessed sequentially with one pass through AP. ! KK = 1 IF (LSAME(UPLO,'U')) THEN ! ! Form A when upper triangle is stored in AP. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 10 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + & DBLE(X(J)*TEMP1+Y(J)*TEMP2) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + & DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF JX = JX + INCX JY = JY + INCY KK = KK + J 40 CONTINUE END IF ELSE ! ! Form A when lower triangle is stored in AP. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) AP(KK) = DBLE(AP(KK)) + & DBLE(X(J)*TEMP1+Y(J)*TEMP2) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 50 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) AP(KK) = DBLE(AP(KK)) + & DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF JX = JX + INCX JY = JY + INCY KK = KK + N - J + 1 80 CONTINUE END IF END IF ! RETURN ! ! End of ZHPR2 . ! END SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP) ! .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*) ! .. ! ! Purpose ! ======= ! ! ZHPR performs the hermitian rank 1 operation ! ! A := alpha*x*x**H + A, ! ! where alpha is a real scalar, x is an n element vector and A is an ! n by n hermitian matrix, supplied in packed form. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the matrix A is supplied in the packed ! array AP as follows: ! ! UPLO = 'U' or 'u' The upper triangular part of A is ! supplied in AP. ! ! UPLO = 'L' or 'l' The lower triangular part of A is ! supplied in AP. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - DOUBLE PRECISION. ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! AP - COMPLEX*16 array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular part of the hermitian matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) ! and a( 2, 2 ) respectively, and so on. On exit, the array ! AP is overwritten by the upper triangular part of the ! updated matrix. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular part of the hermitian matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) ! and a( 3, 1 ) respectively, and so on. On exit, the array ! AP is overwritten by the lower triangular part of the ! updated matrix. ! Note that the imaginary parts of the diagonal elements need ! not be set, they are assumed to be zero, and on exit they ! are set to zero. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHPR ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN ! ! Set the start point in X if the increment is not unity. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of the array AP ! are accessed sequentially with one pass through AP. ! KK = 1 IF (LSAME(UPLO,'U')) THEN ! ! Form A when upper triangle is stored in AP. ! IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP K = K + 1 10 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) IX = KX DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE ! ! Form A when lower triangle is stored in AP. ! IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J)) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP K = K + 1 50 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX)) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX AP(K) = AP(K) + X(IX)*TEMP 70 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF ! RETURN ! ! End of ZHPR . ! END SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) ! .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) ! .. ! ! Purpose ! ======= ! ! ZTBMV performs one of the matrix-vector operations ! ! x := A*x, or x := A**T*x, or x := A**H*x, ! ! where x is an n element vector and A is an n by n unit, or non-unit, ! upper or lower triangular band matrix, with ( k + 1 ) diagonals. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the operation to be performed as ! follows: ! ! TRANS = 'N' or 'n' x := A*x. ! ! TRANS = 'T' or 't' x := A**T*x. ! ! TRANS = 'C' or 'c' x := A**H*x. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! K - INTEGER. ! On entry with UPLO = 'U' or 'u', K specifies the number of ! super-diagonals of the matrix A. ! On entry with UPLO = 'L' or 'l', K specifies the number of ! sub-diagonals of the matrix A. ! K must satisfy 0 .le. K. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) ! by n part of the array A must contain the upper triangular ! band part of the matrix of coefficients, supplied column by ! column, with the leading diagonal of the matrix in row ! ( k + 1 ) of the array, the first super-diagonal starting at ! position 2 in row k, and so on. The top left k by k triangle ! of the array A is not referenced. ! The following program segment will transfer an upper ! triangular band matrix from conventional full matrix storage ! to band storage: ! ! DO 20, J = 1, N ! M = K + 1 - J ! DO 10, I = MAX( 1, J - K ), J ! A( M + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) ! by n part of the array A must contain the lower triangular ! band part of the matrix of coefficients, supplied column by ! column, with the leading diagonal of the matrix in row 1 of ! the array, the first sub-diagonal starting at position 1 in ! row 2, and so on. The bottom right k by k triangle of the ! array A is not referenced. ! The following program segment will transfer a lower ! triangular band matrix from conventional full matrix storage ! to band storage: ! ! DO 20, J = 1, N ! M = 1 - J ! DO 10, I = J, MIN( N, J + K ) ! A( M + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Note that when DIAG = 'U' or 'u' the elements of the array A ! corresponding to the diagonal elements of the matrix are not ! referenced, but are assumed to be unity. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! ( k + 1 ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. On exit, X is overwritten with the ! tranformed vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX,MIN ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTBMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF (N.EQ.0) RETURN ! NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! IF (LSAME(TRANS,'N')) THEN ! ! Form x := A*x. ! IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) L = KPLUS1 - J DO 10 I = MAX(1,J-K),J - 1 X(I) = X(I) + TEMP*A(L+I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = KPLUS1 - J DO 30 I = MAX(1,J-K),J - 1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) END IF JX = JX + INCX IF (J.GT.K) KX = KX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) L = 1 - J DO 50 I = MIN(N,J+K),J + 1,-1 X(I) = X(I) + TEMP*A(L+I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(1,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = 1 - J DO 70 I = MIN(N,J+K),J + 1,-1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(1,J) END IF JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 80 CONTINUE END IF END IF ELSE ! ! Form x := A**T*x or x := A**H*x. ! IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 90 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J)) DO 100 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + DCONJG(A(L+I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 140 J = N,1,-1 TEMP = X(JX) KX = KX - INCX IX = KX L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 120 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(IX) IX = IX - INCX 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J)) DO 130 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + DCONJG(A(L+I,J))*X(IX) IX = IX - INCX 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 150 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J)) DO 160 I = J + 1,MIN(N,J+K) TEMP = TEMP + DCONJG(A(L+I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) KX = KX + INCX IX = KX L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 180 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(IX) IX = IX + INCX 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J)) DO 190 I = J + 1,MIN(N,J+K) TEMP = TEMP + DCONJG(A(L+I,J))*X(IX) IX = IX + INCX 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF ! RETURN ! ! End of ZTBMV . ! END SUBROUTINE ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) ! .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) ! .. ! ! Purpose ! ======= ! ! ZTBSV solves one of the systems of equations ! ! A*x = b, or A**T*x = b, or A**H*x = b, ! ! where b and x are n element vectors and A is an n by n unit, or ! non-unit, upper or lower triangular band matrix, with ( k + 1 ) ! diagonals. ! ! No test for singularity or near-singularity is included in this ! routine. Such tests must be performed before calling this routine. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the equations to be solved as ! follows: ! ! TRANS = 'N' or 'n' A*x = b. ! ! TRANS = 'T' or 't' A**T*x = b. ! ! TRANS = 'C' or 'c' A**H*x = b. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! K - INTEGER. ! On entry with UPLO = 'U' or 'u', K specifies the number of ! super-diagonals of the matrix A. ! On entry with UPLO = 'L' or 'l', K specifies the number of ! sub-diagonals of the matrix A. ! K must satisfy 0 .le. K. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) ! by n part of the array A must contain the upper triangular ! band part of the matrix of coefficients, supplied column by ! column, with the leading diagonal of the matrix in row ! ( k + 1 ) of the array, the first super-diagonal starting at ! position 2 in row k, and so on. The top left k by k triangle ! of the array A is not referenced. ! The following program segment will transfer an upper ! triangular band matrix from conventional full matrix storage ! to band storage: ! ! DO 20, J = 1, N ! M = K + 1 - J ! DO 10, I = MAX( 1, J - K ), J ! A( M + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) ! by n part of the array A must contain the lower triangular ! band part of the matrix of coefficients, supplied column by ! column, with the leading diagonal of the matrix in row 1 of ! the array, the first sub-diagonal starting at position 1 in ! row 2, and so on. The bottom right k by k triangle of the ! array A is not referenced. ! The following program segment will transfer a lower ! triangular band matrix from conventional full matrix storage ! to band storage: ! ! DO 20, J = 1, N ! M = 1 - J ! DO 10, I = J, MIN( N, J + K ) ! A( M + I, J ) = matrix( I, J ) ! 10 CONTINUE ! 20 CONTINUE ! ! Note that when DIAG = 'U' or 'u' the elements of the array A ! corresponding to the diagonal elements of the matrix are not ! referenced, but are assumed to be unity. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! ( k + 1 ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element right-hand side vector b. On exit, X is overwritten ! with the solution vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX,MIN ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTBSV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF (N.EQ.0) RETURN ! NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of A are ! accessed by sequentially with one pass through A. ! IF (LSAME(TRANS,'N')) THEN ! ! Form x := inv( A )*x. ! IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE ! ! Form x := inv( A**T )*x or x := inv( A**H )*x. ! IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) ELSE DO 100 I = MAX(1,J-K),J - 1 TEMP = TEMP - DCONJG(A(L+I,J))*X(I) 100 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX DO 140 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J IF (NOCONJ) THEN DO 120 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) ELSE DO 130 I = MAX(1,J-K),J - 1 TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) END IF X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) L = 1 - J IF (NOCONJ) THEN DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) ELSE DO 160 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - DCONJG(A(L+I,J))*X(I) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) END IF X(J) = TEMP 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J IF (NOCONJ) THEN DO 180 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) ELSE DO 190 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) END IF X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 200 CONTINUE END IF END IF END IF ! RETURN ! ! End of ZTBSV . ! END SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) ! .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*) ! .. ! ! Purpose ! ======= ! ! ZTPMV performs one of the matrix-vector operations ! ! x := A*x, or x := A**T*x, or x := A**H*x, ! ! where x is an n element vector and A is an n by n unit, or non-unit, ! upper or lower triangular matrix, supplied in packed form. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the operation to be performed as ! follows: ! ! TRANS = 'N' or 'n' x := A*x. ! ! TRANS = 'T' or 't' x := A**T*x. ! ! TRANS = 'C' or 'c' x := A**H*x. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! AP - COMPLEX*16 array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular matrix packed sequentially, ! column by column, so that AP( 1 ) contains a( 1, 1 ), ! AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) ! respectively, and so on. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular matrix packed sequentially, ! column by column, so that AP( 1 ) contains a( 1, 1 ), ! AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) ! respectively, and so on. ! Note that when DIAG = 'U' or 'u', the diagonal elements of ! A are not referenced, but are assumed to be unity. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. On exit, X is overwritten with the ! tranformed vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOCONJ,NOUNIT ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTPMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF (N.EQ.0) RETURN ! NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of AP are ! accessed sequentially with one pass through AP. ! IF (LSAME(TRANS,'N')) THEN ! ! Form x:= A*x. ! IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*AP(K) K = K + 1 10 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 K = KK,KK + J - 2 X(IX) = X(IX) + TEMP*AP(K) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*AP(K) K = K - 1 50 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) END IF KK = KK - (N-J+1) 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 K = KK,KK - (N- (J+1)),-1 X(IX) = X(IX) + TEMP*AP(K) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) END IF JX = JX - INCX KK = KK - (N-J+1) 80 CONTINUE END IF END IF ELSE ! ! Form x := A**T*x or x := A**H*x. ! IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) K = KK - 1 IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 90 I = J - 1,1,-1 TEMP = TEMP + AP(K)*X(I) K = K - 1 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 100 I = J - 1,1,-1 TEMP = TEMP + DCONJG(AP(K))*X(I) K = K - 1 100 CONTINUE END IF X(J) = TEMP KK = KK - J 110 CONTINUE ELSE JX = KX + (N-1)*INCX DO 140 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 120 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + AP(K)*X(IX) 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 130 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + DCONJG(AP(K))*X(IX) 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX KK = KK - J 140 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) K = KK + 1 IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 150 I = J + 1,N TEMP = TEMP + AP(K)*X(I) K = K + 1 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 160 I = J + 1,N TEMP = TEMP + DCONJG(AP(K))*X(I) K = K + 1 160 CONTINUE END IF X(J) = TEMP KK = KK + (N-J+1) 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 180 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + AP(K)*X(IX) 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 190 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + DCONJG(AP(K))*X(IX) 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX KK = KK + (N-J+1) 200 CONTINUE END IF END IF END IF ! RETURN ! ! End of ZTPMV . ! END SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) ! .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*) ! .. ! ! Purpose ! ======= ! ! ZTPSV solves one of the systems of equations ! ! A*x = b, or A**T*x = b, or A**H*x = b, ! ! where b and x are n element vectors and A is an n by n unit, or ! non-unit, upper or lower triangular matrix, supplied in packed form. ! ! No test for singularity or near-singularity is included in this ! routine. Such tests must be performed before calling this routine. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the equations to be solved as ! follows: ! ! TRANS = 'N' or 'n' A*x = b. ! ! TRANS = 'T' or 't' A**T*x = b. ! ! TRANS = 'C' or 'c' A**H*x = b. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! AP - COMPLEX*16 array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular matrix packed sequentially, ! column by column, so that AP( 1 ) contains a( 1, 1 ), ! AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) ! respectively, and so on. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular matrix packed sequentially, ! column by column, so that AP( 1 ) contains a( 1, 1 ), ! AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) ! respectively, and so on. ! Note that when DIAG = 'U' or 'u', the diagonal elements of ! A are not referenced, but are assumed to be unity. ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element right-hand side vector b. On exit, X is overwritten ! with the solution vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOCONJ,NOUNIT ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTPSV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF (N.EQ.0) RETURN ! NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of AP are ! accessed sequentially with one pass through AP. ! IF (LSAME(TRANS,'N')) THEN ! ! Form x := inv( A )*x. ! IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK - 1 DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*AP(K) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 30 K = KK - 1,KK - J + 1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*AP(K) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK + 1 DO 50 I = J + 1,N X(I) = X(I) - TEMP*AP(K) K = K + 1 50 CONTINUE END IF KK = KK + (N-J+1) 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX X(IX) = X(IX) - TEMP*AP(K) 70 CONTINUE END IF JX = JX + INCX KK = KK + (N-J+1) 80 CONTINUE END IF END IF ELSE ! ! Form x := inv( A**T )*x or x := inv( A**H )*x. ! IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) K = KK IF (NOCONJ) THEN DO 90 I = 1,J - 1 TEMP = TEMP - AP(K)*X(I) K = K + 1 90 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) ELSE DO 100 I = 1,J - 1 TEMP = TEMP - DCONJG(AP(K))*X(I) K = K + 1 100 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1)) END IF X(J) = TEMP KK = KK + J 110 CONTINUE ELSE JX = KX DO 140 J = 1,N TEMP = X(JX) IX = KX IF (NOCONJ) THEN DO 120 K = KK,KK + J - 2 TEMP = TEMP - AP(K)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) ELSE DO 130 K = KK,KK + J - 2 TEMP = TEMP - DCONJG(AP(K))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1)) END IF X(JX) = TEMP JX = JX + INCX KK = KK + J 140 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) K = KK IF (NOCONJ) THEN DO 150 I = N,J + 1,-1 TEMP = TEMP - AP(K)*X(I) K = K - 1 150 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) ELSE DO 160 I = N,J + 1,-1 TEMP = TEMP - DCONJG(AP(K))*X(I) K = K - 1 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J)) END IF X(J) = TEMP KK = KK - (N-J+1) 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 TEMP = X(JX) IX = KX IF (NOCONJ) THEN DO 180 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - AP(K)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) ELSE DO 190 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - DCONJG(AP(K))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J)) END IF X(JX) = TEMP JX = JX - INCX KK = KK - (N-J+1) 200 CONTINUE END IF END IF END IF ! RETURN ! ! End of ZTPSV . ! END SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) ! .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) ! .. ! ! Purpose ! ======= ! ! ZTRMV performs one of the matrix-vector operations ! ! x := A*x, or x := A**T*x, or x := A**H*x, ! ! where x is an n element vector and A is an n by n unit, or non-unit, ! upper or lower triangular matrix. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the operation to be performed as ! follows: ! ! TRANS = 'N' or 'n' x := A*x. ! ! TRANS = 'T' or 't' x := A**T*x. ! ! TRANS = 'C' or 'c' x := A**H*x. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading n by n ! upper triangular part of the array A must contain the upper ! triangular matrix and the strictly lower triangular part of ! A is not referenced. ! Before entry with UPLO = 'L' or 'l', the leading n by n ! lower triangular part of the array A must contain the lower ! triangular matrix and the strictly upper triangular part of ! A is not referenced. ! Note that when DIAG = 'U' or 'u', the diagonal elements of ! A are not referenced either, but are assumed to be unity. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, n ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. On exit, X is overwritten with the ! tranformed vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! The vector and matrix arguments are not referenced when N = 0, or M = 0 ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOCONJ,NOUNIT ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF (N.EQ.0) RETURN ! NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! IF (LSAME(TRANS,'N')) THEN ! ! Form x := A*x. ! IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE ! ! Form x := A**T*x or x := A**H*x. ! IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 100 I = J - 1,1,-1 TEMP = TEMP + DCONJG(A(I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX + (N-1)*INCX DO 140 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 120 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 130 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + DCONJG(A(I,J))*X(IX) 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 160 I = J + 1,N TEMP = TEMP + DCONJG(A(I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 180 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 190 I = J + 1,N IX = IX + INCX TEMP = TEMP + DCONJG(A(I,J))*X(IX) 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF ! RETURN ! ! End of ZTRMV . ! END SUBROUTINE ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) ! .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO ! .. ! .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) ! .. ! ! Purpose ! ======= ! ! ZTRSV solves one of the systems of equations ! ! A*x = b, or A**T*x = b, or A**H*x = b, ! ! where b and x are n element vectors and A is an n by n unit, or ! non-unit, upper or lower triangular matrix. ! ! No test for singularity or near-singularity is included in this ! routine. Such tests must be performed before calling this routine. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the equations to be solved as ! follows: ! ! TRANS = 'N' or 'n' A*x = b. ! ! TRANS = 'T' or 't' A**T*x = b. ! ! TRANS = 'C' or 'c' A**H*x = b. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! A - COMPLEX*16 array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading n by n ! upper triangular part of the array A must contain the upper ! triangular matrix and the strictly lower triangular part of ! A is not referenced. ! Before entry with UPLO = 'L' or 'l', the leading n by n ! lower triangular part of the array A must contain the lower ! triangular matrix and the strictly upper triangular part of ! A is not referenced. ! Note that when DIAG = 'U' or 'u', the diagonal elements of ! A are not referenced either, but are assumed to be unity. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, n ). ! Unchanged on exit. ! ! X - COMPLEX*16 array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element right-hand side vector b. On exit, X is overwritten ! with the solution vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! Further Details ! =============== ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) ! .. ! .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOCONJ,NOUNIT ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA ! .. ! .. Intrinsic Functions .. INTRINSIC DCONJG,MAX ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. & .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRSV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF (N.EQ.0) RETURN ! NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! IF (LSAME(TRANS,'N')) THEN ! ! Form x := inv( A )*x. ! IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*A(I,J) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 30 I = J - 1,1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*A(I,J) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 50 I = J + 1,N X(I) = X(I) - TEMP*A(I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 70 I = J + 1,N IX = IX + INCX X(IX) = X(IX) - TEMP*A(I,J) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE ! ! Form x := inv( A**T )*x or x := inv( A**H )*x. ! IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) IF (NOCONJ) THEN DO 90 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 100 I = 1,J - 1 TEMP = TEMP - DCONJG(A(I,J))*X(I) 100 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX DO 140 J = 1,N IX = KX TEMP = X(JX) IF (NOCONJ) THEN DO 120 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 130 I = 1,J - 1 TEMP = TEMP - DCONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(JX) = TEMP JX = JX + INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) IF (NOCONJ) THEN DO 150 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(I) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 160 I = N,J + 1,-1 TEMP = TEMP - DCONJG(A(I,J))*X(I) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(J) = TEMP 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 IX = KX TEMP = X(JX) IF (NOCONJ) THEN DO 180 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 190 I = N,J + 1,-1 TEMP = TEMP - DCONJG(A(I,J))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(JX) = TEMP JX = JX - INCX 200 CONTINUE END IF END IF END IF ! RETURN ! ! End of ZTRSV . ! END