subroutine i4vec_print ( n, a, title ) !*****************************************************************************80 ! !! I4VEC_PRINT prints an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 28 November 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, integer ( kind = 4 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) n integer ( kind = 4 ) a(n) integer ( kind = 4 ) i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,i12)' ) i, a(i) end do return end subroutine i4mat_print ( m, n, a, title ) !*****************************************************************************80 ! !! I4MAT_PRINT prints an I4MAT. ! ! Discussion: ! ! An I4MAT is a rectangular array of I4 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 30 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows in A. ! ! Input, integer ( kind = 4 ) N, the number of columns in A. ! ! Input, integer ( kind = 4 ) A(M,N), the matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title ilo = 1 ihi = m jlo = 1 jhi = n call i4mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) return end subroutine i4mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_PRINT_SOME prints some of an I4MAT. ! ! Discussion: ! ! An I4MAT is a rectangular array of I4 values. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 04 November 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, integer ( kind = 4 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer ( kind = 4 ), parameter :: incx = 10 integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) a(m,n) character ( len = 8 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i8)' ) j end do write ( *, '('' Col '',10a8)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(i8)' ) a(i,j) end do write ( *, '(i5,1x,10a8)' ) i, ( ctemp(j), j = 1, inc ) end do end do return end function r8_uniform_01 ( seed ) !*****************************************************************************80 ! !! R8_UNIFORM_01 returns a unit pseudorandom R8. ! ! Discussion: ! ! An R8 is a real ( kind = 8 ) value. ! ! For now, the input quantity SEED is an integer variable. ! ! This routine implements the recursion ! ! seed = 16807 * seed mod ( 2^31 - 1 ) ! r8_uniform_01 = seed / ( 2^31 - 1 ) ! ! The integer arithmetic never requires more than 32 bits, ! including a sign bit. ! ! If the initial seed is 12345, then the first three computations are ! ! Input Output R8_UNIFORM_01 ! SEED SEED ! ! 12345 207482415 0.096616 ! 207482415 1790989824 0.833995 ! 1790989824 2035175616 0.947702 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which should ! NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = 8 ) R8_UNIFORM_01, a new pseudorandom variate, ! strictly between 0 and 1. ! implicit none integer ( kind = 4 ), parameter :: i4_huge = 2147483647 integer ( kind = 4 ) k real ( kind = 8 ) r8_uniform_01 integer ( kind = 4 ) seed if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if ! ! Although SEED can be represented exactly as a 32 bit integer, ! it generally cannot be represented exactly as a 32 bit real number! ! r8_uniform_01 = real ( seed, kind = 8 ) * 4.656612875D-10 return end subroutine rcont2 ( nrow, ncol, nrowt, ncolt, key, seed, matrix, ierror ) !*****************************************************************************80 ! !! RCONT2 constructs a random two-way contingency table with given sums. ! ! Discussion: ! ! It is possible to specify row and column sum vectors which ! correspond to no table at all. As far as I can see, this routine does ! not detect such a case. ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 10 March 2009 ! ! Author: ! ! Original FORTRAN77 version by WM Patefield. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! WM Patefield, ! Algorithm AS 159: ! An Efficient Method of Generating RXC Tables with ! Given Row and Column Totals, ! Applied Statistics, ! Volume 30, Number 1, 1981, pages 91-97. ! ! Parameters: ! ! Input, integer ( kind = 4 ) NROW, NCOL, the number of rows and columns ! in the table. NROW and NCOL must each be at least 2. ! ! Input, integer ( kind = 4 ) NROWT(NROW), NCOLT(NCOL), the row and column ! sums. Each entry must be positive. ! ! Input/output, logical KEY, a flag that indicates whether data has ! been initialized for this problem. Set KEY = .FALSE. before the first ! call. ! ! Input/output, integer ( kind = 4 ) SEED, a seed for the random number ! generator. ! ! Output, integer ( kind = 4 ) MATRIX(NROW,NCOL), the matrix. ! ! Output, integer ( kind = 4 ) IERROR, an error flag, which is returned ! as 0 if no error occurred. ! implicit none integer ( kind = 4 ), parameter :: maxtot = 5000 integer ( kind = 4 ) ncol integer ( kind = 4 ) nrow logical done1 logical done2 real ( kind = 8 ), save, dimension ( maxtot+1 ) :: fact integer ( kind = 4 ) i integer ( kind = 4 ) ia integer ( kind = 4 ) iap integer ( kind = 4 ) ib integer ( kind = 4 ) ic integer ( kind = 4 ) id integer ( kind = 4 ) idp integer ( kind = 4 ) ie integer ( kind = 4 ) ierror integer ( kind = 4 ) igp integer ( kind = 4 ) ihp integer ( kind = 4 ) ii integer ( kind = 4 ) iip integer ( kind = 4 ) j integer ( kind = 4 ) jc integer ( kind = 4 ) jwork(ncol) logical key integer ( kind = 4 ) l logical lsm logical lsp integer ( kind = 4 ) m integer ( kind = 4 ) matrix(nrow,ncol) integer ( kind = 4 ) ncolt(ncol) integer ( kind = 4 ) nll integer ( kind = 4 ) nlm integer ( kind = 4 ) nlmp integer ( kind = 4 ) nrowt(nrow) integer ( kind = 4 ) nrowtl integer ( kind = 4 ), save :: ntotal = 0 real ( kind = 8 ) r real ( kind = 8 ) r8_uniform_01 integer ( kind = 4 ) seed real ( kind = 8 ) sumprb real ( kind = 8 ) x real ( kind = 8 ) y ierror = 0 ! ! On user's signal, set up the factorial table. ! if ( .not. key ) then key = .true. if ( nrow <= 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCONT - Fatal error!' write ( *, '(a)' ) ' Input number of rows is less than 2.' ierror = 1 return end if if ( ncol <= 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCONT - Fatal error!' write ( *, '(a)' ) ' The number of columns is less than 2.' ierror = 2 return end if do i = 1, nrow if ( nrowt(i) <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCONT - Fatal error!' write ( *, '(a)' ) ' An entry in the row sum vector is not positive.' ierror = 3 return end if end do do j = 1, ncol if ( ncolt(j) <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCONT - Fatal error!' write ( *, '(a)' ) & ' An entry in the column sum vector is not positive.' ierror = 4 return end if end do if ( sum ( ncolt(1:ncol) ) /= sum ( nrowt(1:nrow) ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCONT - Fatal error!' write ( *, '(a)' ) & ' The row and column sum vectors do not have the same sum.' ierror = 6 return end if ntotal = sum ( ncolt(1:ncol) ) if ( maxtot < ntotal ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RCONT - Fatal error!' write ( *, '(a)' ) & ' The sum of the column sum vector entries is too large.' ierror = 5 return end if ! ! Calculate log-factorials. ! x = 0.0D+00 fact(1) = 0.0D+00 do i = 1, ntotal x = x + log ( real ( i, kind = 8 ) ) fact(i+1) = x end do end if ! ! Construct a random matrix. ! jwork(1:ncol-1) = ncolt(1:ncol-1) jc = ntotal do l = 1, nrow - 1 nrowtl = nrowt(l) ia = nrowtl ic = jc jc = jc - nrowtl do m = 1, ncol - 1 id = jwork(m) ie = ic ic = ic - id ib = ie - ia ii = ib - id ! ! Test for zero entries in matrix. ! if ( ie == 0 ) then ia = 0 matrix(l,m:ncol) = 0 exit end if ! ! Generate a pseudo-random number. ! r = r8_uniform_01 ( seed ) ! ! Compute the conditional expected value of MATRIX(L,M). ! done1 = .false. do nlm = int ( & real ( ia * id, kind = 8 ) / real ( ie , kind = 8 ) + 0.5D+00 ) iap = ia + 1 idp = id + 1 igp = idp - nlm ihp = iap - nlm nlmp = nlm + 1 iip = ii + nlmp x = exp ( fact(iap) + fact(ib+1) + fact(ic+1) + fact(idp) - & fact(ie+1) - fact(nlmp) - fact(igp) - fact(ihp) - fact(iip) ) if ( r <= x ) then exit end if sumprb = x y = x nll = nlm lsp = .false. lsm = .false. ! ! Increment entry in row L, column M. ! do while ( .not. lsp ) j = ( id - nlm ) * ( ia - nlm ) if ( j == 0 ) then lsp = .true. else nlm = nlm + 1 x = x * real ( j, kind = 8 ) & / real ( nlm * ( ii + nlm ), kind = 8 ) sumprb = sumprb + x if ( r <= sumprb ) then done1 = .true. exit end if end if done2 = .false. do while ( .not. lsm ) ! ! Decrement the entry in row L, column M. ! j = nll * ( ii + nll ) if ( j == 0 ) then lsm = .true. exit end if nll = nll - 1 y = y * real ( j, kind = 8 ) & / real ( ( id - nll ) * ( ia - nll ), kind = 8 ) sumprb = sumprb + y if ( r <= sumprb ) then nlm = nll done2 = .true. exit end if if ( .not. lsp ) then exit end if end do if ( done2 ) then exit end if end do if ( done1 ) then exit end if if ( done2 ) then exit end if r = r8_uniform_01 ( seed ) r = sumprb * r end do matrix(l,m) = nlm ia = ia - nlm jwork(m) = jwork(m) - nlm end do matrix(l,ncol) = ia end do ! ! Compute the last row. ! matrix(nrow,1:ncol-1) = jwork(1:ncol-1) matrix(nrow,ncol) = ib - matrix(nrow,ncol-1) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end